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Goldstern’s theorem

(total domination order) For x , x ′ ∈ ωω, define a relation x ≤ x ′ by
(∀n ∈ ω)(x(n) ≤ x ′(n)).

In 1993, Martin Goldstern proved the following theorem.

Goldstern’s theorem

Let A ⊆ ωω × 2ω be a Σ1
1 set. Assume that for each x ∈ ωω,

Ax := {y ∈ Y : (x , y) ∈ A}

has Lebesgue measure 0. Also, assume (∀x , x ′ ∈ ωω)(x ≤ x ′ ⇒ Ax ⊆ Ax ′), which
is called monotonicity property. Then

∪
x∈ωω Ax has also Lebesgue measure 0.

He used the Shoenfield absoluteness theorem and the random forcing to show
this theorem. Also he applied this theorem to uniform distribution theory.
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The principle GP(Γ)

Definition
Let Γ be a pointclass. Then GP(Γ) means the following statement: Let
A ⊆ ωω × 2ω be in Γ. Assume that for each x ∈ ωω, Ax has Lebesgue measure 0.
Also suppose the monotonicity property. Then

∪
x∈ωω Ax has also Lebesgue

measure 0.

Goldstern’s theorem says that GP(Σ1
1) holds.

Note that if we replace the domination order ≤ by the almost domination order
≤∗, then the principle does not change.
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In choiceless context

The symbol “all” denotes the class of all subsets of Polish spaces. In choiceless
context, we showed the following two theorems.

Theorem A (G.) (ZF)

AD implies GP(all).

Theorem B (G.) (ZF+CC)

If the measure uniformization holds then GP(all) holds. In particular, GP(all)
holds in the Solovay model.
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Proof of Theorem B

Theorem B (G.) (ZF+CC)

If the measure uniformization holds then GP(all) holds.

Definition The measure uniformization holds if for every family ⟨Bx : x ∈ R⟩
with ∅ ̸= Bx ⊆ R, there is a Lebesuge measurable function f : R → R such that
{x : f (x) ̸∈ Bx} is null.

Proof of Theorem B. Let ⟨Ax : x ∈ ωω⟩ be monotone and each Ax is null.
Suppose

∪
x∈ωω Ax is not null. Then there is a compact positive set

K ⊆
∪

x∈ωω Ax . Use the measure uniformization for {(y , x) ∈ K × ωω : y ∈ Ax}.
Shrinking K and using Lusin’s theorem, we can take continuous f : K → ωω such
that y ∈ Af (y) for every y ∈ K . Since f [K ] is compact, we can take an upper
bound x of f [K ]. Then we have K ⊆ Ax , which is a contradiction.
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Independence of GP(all) with ZFC

Is GP(all) consistent with the axiom of choice...?
⇝ Yes!

Theorem C (G.)

GP(all) is independent from ZFC.
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Consistency of ¬GP(all)

Theorem (G.)

Assume that at least one of the following four conditions holds:
add(N ) = b, non(N ) = b, non(N ) = d or add(M) = cof(M).

Then ¬GP(all) holds. In particular CH implies ¬GP(all).
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Consistency of GP(all)

Theorem (G.)

If ZFC is consistent then so is ZFC+ GP(all).

In fact, “The Laver model” satisfies GP(all).

equal to ℵ1 in the Laver model

equal to ℵ2 in the Laver model

add(N )

cov(N )

add(M)

b

non(M)

cov(M)

d

cof(M)

non(N )

cof(N )

ℵ1

2ℵ0
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GP(Π1
1)

Theorem D (G.)

GP(Π1
1) holds.
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Connection to regularity properties

Theorem E (G.)

Σ1
2 Lebesuge measurability implies GP(Σ1

2). Moreover, GP(∆1
2) implies that for

every real a there is a dominating real over L[a].
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Connection to regularity properties

Theorem F (G.)

∆1
2(B) ∧Σ1

2(L) implies GP(Π1
2).

Σ1
2(B)

∆1
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GP(Σ1
2)

GP(Π1
2)

GP(∆1
2)
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Open questions

1 Is ZFC+ (c ≥ ℵ3) + GP(all) consistent?

2 For some n ≥ 2 (or for every n ≥ 2), can we separate GP(Σ1
n+1) and

GP(Σ1
n) without using large cardinals? Also can we separate GP(Σ1

n) and
GP(Π1

n)?

3 Can we separate each of the implications of the figure on the previous slide?
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Models

Σ1
2(B) ∆1

2(B) Σ1
2(L) GP(all) GP(Σ1

2) GP(Π1
2) GP(∆1

2)

Cohen NO NO NO NO NO NO NO
random NO YES NO NO NO NO NO
amoeba YES YES YES NO YES YES YES
Laver NO NO YES YES YES YES YES
Hechler NO NO YES NO ？ ？ ？
Mathias NO NO YES NO ？ ？ ？
Laver*random NO YES YES YES YES YES YES
Hechler*random NO YES YES NO ？ YES YES
Mathias*random NO YES YES NO ？ YES YES
Ramsey filter
guided Laver

NO NO YES ？ ？ ？ ？
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