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Chapter 1

Introduction

The subject of this thesis is cardinal invariants and their application to problems in other fields of
mathematics.

In the first place, set theory originates from the naive action of counting numbers and studies what
happens when we extend this notion to infinite sets. The notion that extends the number of objects
to infinite sets is cardinality, which is the most important notion in set theory. The number concept
that is used for cardinality is the cardinal.

Cantor [Can74] proved in 1874 that the cardinality of the real line is strictly bigger than the
cardinality of the natural numbers, thus giving birth to the field of set theory. Cantor subsequently
made a conjecture called the continuum hypothesis, which states that there are no other cardinalities
strictly between the cardinality of the natural numbers and the cardinality of the real line, but he
was unable to solve it. Eventually, it was shown by Godel [God38] in 1938 that the negation of the
continuum hypothesis cannot be proved from the standard axiomatic system of set theory, ZFC, and
by Cohen [Coh63] in 1963 that the continuum hypothesis cannot be proved from ZFC. For this we
say that the continuum hypothesis is independent from ZFC. The method of forcing, which Cohen
invented to obtain this consistency, is a very big breakthrough in set theory.

An outcome of the invention of the forcing method is that we are able to prove various consistency
results by distinguishing finely notions such as Lebesgue measurability, Baire category and the growth
of functions from natural numbers to themselves, etc. The tools separating such notions are the
cardinal invariants, which are definable cardinals that we extract from the properties of the real line.
The cardinal invariants concerning the 3 notions, Lebesgue measurability, Baire category and the
growth of functions have been well studied and Cichot’s diagram (see Chapter 2) summarizes this

study. In 1993, Cichori’s diagram was proved to be complete [BJS93], i.e., no more lines can be drawn.

that separates the cardinal invariants of Cichonl’s diagram simultaneously as much as possible.
However, there are many cardinal invariants other than these classical cardinal invariants and there
is the possibility of finding applications that have not yet been found for classical cardinal invariants.
This thesis explores these possibilities.
In Chapter 3, we study Goldstern’s principle stating the union of continuum many null sets is
also null under some assumptions. The assumptions are definability and monotonicity of the family.
Goldstern proved the principle for the definability assumption of analytic sets. The proof is interesting

in that it uses the forcing method normally used for consistency proofs to show a theorem in ZFC.



We examined this principle from various aspects and proved a number of interesting results. One
of the main results in this chapter is to improve on Goldstern’s proof and show that the principle
holds for sets that are not analytic but coanalytic. Another important result is that the principle
obtained by completely removing the condition on definability is independent from ZFC. “Goldstern’s
principle about unions of null sets” (https://arxiv.org/abs/2206.08147) is a preprint that has been
submitted for publication and is available on arXiv. The content of Chapter B of this thesis coincides
with that of this preprint.

In Chapter 4, we discuss cardinal invariants of Hausdorff measures. Hausdorff measures, as the
name implies, were first conceived by Hausdorff and have been classically well studied as measures
where parameters can vary to obtain many measures finer than the Lebesgue measure, and they are
a fundamental tool in the field of fractal geometry. Hausdorff measures are important mathematical
objects that differ from the above three classical notions so that it is meaningful to add cardinal
invariants of them to Cichon’s diagram and consider them. The main result in this chapter is that we
can make a lot of cardinal invariants of Hausdorff measures take different values. “ Cardinal invariants
associated with Hausdorff measures” (https://arxiv.org/abs/2112.07952) is a preprint that has
been submitted for publication and is available on arXiv. The content of Chapter 4 of this thesis
coincides with that of this preprint.

In Chapter b, we study Keisler’s theorem. The theorem by Keisler and Shelah saying that the
notion of elementary equivalence can be characterized in terms of ultrapowers is a milestone in model
theory. However, Keisler’s proof assumes the general continuum hypothesis, and Shelah’s proof uses
ultrapowers with a fairly large index set, so there is still room for further research. How does the
Keisler-Shelah theorem behave with ultrapowers using relatively small index sets without assuming
the general continuum hypothesis? The main result in this chapter is that Keisler’s theorem and many
other related principles are related to the cardinal invariant cov(M) but cov(M) < ¢ is consistent
with a version of Keisler’s theorem. “Keisler’s theorem and cardinal invariants” was published in
Journal of Symbolic Logic, Volume 89(2) (pp. 905-917) (https://doi.org/10.1017/is1.2022.77).
Also “Keisler’s theorem and cardinal invariants at uncountable cardinals” was published in RIMS
Kokytroku No.2290: Large Cardinals and the Continuum (https://www.kurims.kyoto-u.ac.ip/
~kyodo/kokyuroku/contents/pdf/2290-05.pdf). The content of Chapter 8 of this thesis contains
that of these two papers.

In Chapter B, we discuss cardinal invariants associated with the notion of comparability and
incomparability of posets. We show in this chapter that for many well-known posets, compara-
bility numbers and incomparability numbers often coincide with existing cardinal invariants. “The
Comparability Numbers and the Incomparability Numbers” was published online in Order (https:
//doi.org/10.1007/511083-024-09672-y). The content of Chapter B of this thesis coincides with
that of this paper.

In Chapter 4, we study cardinal invariants defined from a game-theoretic viewpoint. We show
that a game-theoretic interpretation of classically well-studied cardinal invariants yields new cardinal
invariants, and we investigate the relationship between these cardinal invariants. The main result is
the cardinal invariants obtained by considering a new game, the so-called splitting game, consistently
differ from any of classical cardinal invariants. “Game-theoretic variants of cardinal invariants” is
a preprint written by Jorge Antonio Cruz Chapital, the author and Yusuke Hayashi and has been
submitted for publication and is available on arXiv (https://arxiv.org/abs/2308.12136). The

content of Chapter [/ of this thesis contains that of this preprint. “Game-theoretic variants of splitting
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number” is a preprint written by Jorge Antonio Cruz Chapital, the author, Yusuke Hayashi and
Takashi Yamazoe and has been submitted for publication and is available on arXiv (https://arxiv.

org/abs/2412.19556). Chapter [ of this thesis and this preprint share some contents.
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Chapter 2

Preliminaries

The axiomatic framework for the most of the discussion in this thesis is ZFC, that is Zermelo—Fraenkel

set theory with the axiom of choice.

(V°°n) and (3°°n) are abbreviations to say “for all but finitely many n” and “there exist infinitely
many n”, respectively.

For A, B C w, the relation A C* B means that A ~\ B is finite. We say B almost contains A if
A C* B holds. In addition, for z,y € w*, the relation x <* y means (V°n)(xz(n) < y(n)). We say y
dominates x if x <* y holds. We sometimes use the following totally domination relation: < y, which
means (Vn € w)(z(n) < y(n)) for z,y € w*. We use the notation z <> y, that means —(y <* z).

¢ denotes the cardinality of the continuum.

M denotes the all meager subsets of 2. And also, N denotes the all Lebesgue null subsets of 2v.

The following are some standard cardinal invariants.

Definition 2.0.1. (1) A C w* is a dominating family if for every x € w*, there is y € A that

dominates z. Define the dominating number ? by @ = min{|A4| : A C w* a dominating family}.

(2) A C w® is an unbounded family if for every x € w®, there is y € A that is not dominated by x.
Define the bounding number b by b = min{|A| : A C w* an unbounded family}.

(3) For z € P(w) and y € [w]“, we say x splits y if both of y Nz and y \ = are infinite. A C P(w) is
a splitting family if for every y € [w]®, there is € A such that z splits y. Define the splitting
number s by s = min{|A| : A C P(w) a splitting family}.

(4) For x € P(w) and y € [w]¥, we say y reaps x if either y C* z or y C* w~x holds. This is equivalent

w

to say x does not split y. A C [w]“ is a reaping family if for every z € P(w), there is y € A such

that y reaps . Define the reaping number t by v = min{|A| : A C [w]* a reaping family}.

(5) A C P(w) is a o-splitting family if for every f € ([w]¥)¥, there is € A such that x splits f(n) for
every n € w. Define the o-splitting number s, by s, = min{|A| : A C P(w) a o-splitting family}.

(6) A C [w]“ is a o-reaping family if for every f € (P(w))%, there is y € A such that y reaps f(n) for
every n € w. Define the o-reaping number t, by t, = min{|A| : A C [w]¥ a o-reaping family}.

(7) For an ideal Z on a set X: add(Z) (the additivity number of Z) is the smallest cardinality of a
family F' of sets in Z such that the union of F' is not in Z.



(8) For an ideal Z on a set X: cov(Z) (the covering number of Z) is the smallest cardinality of a

family F' of sets in Z such that the union of F' is equal to X.

(9) For an ideal Z on a set X: non(Z) (the uniformity of Z) is the smallest cardinality of a subset A
of X such that A does not belong to Z.

(10) For an ideal Z on a set X: cof(Z) (the cofinality of 7) is the smallest cardinality of a family F' of
sets in Z that satisfies the following condition: for every A € Z, there is B € F such that A C B.

Considering these four invariants add(Z), cov(Z), non(Z) and cof(Z) for M and N, we obtain 8
cardinal invariants of the continuum. Adding b and 0 to these invariants, we obtain 10 of them. The

following fact tells us the relationship of these invariants.

Fact 2.0.2 (Bartoszyniski, Fremlin, Miller, Rothberger and Truss (see [BJY94])). In the following dia-
gram, an arrow drawn from a cardinal A to another cardinal B indicates that A < B is provable from

ZFC.
cov(N) — non(M) — cof (M) — cof(N) ——— ¢

)
T T
b————0
T T
Ny — add(N) — add(M) — cov(M) —— non(N)

This diagram is called Cichoi’s diagram.

Let IP be the set of all interval partitions of w. For [ = (I,,:n € w),J = (J,, : m € w) € IP, we
define
I < J:& (V°m)3n)I, C Jn).

The following notion of Tukey relation is essential in the field of cardinal invariants.
Definition 2.0.3. (1) A triple R = (X,Y, R) is a relational system if R C X x Y.

(2) For two relational system R = (X,Y, R) and R’ = (X', Y’, R), R is Tukey below R’ if there are
two maps p: X — X’ and ¢: Y/ — Y such that ¢(x)R’y’ implies xRy (y’) for every x € X and
y ey

(3) For a relational system R = (X,Y, R), we define
o(R) =min{|B|: BCY,(Vz € X)(3y € B)(xRy)},and
b(R) =min{|4]: AC X, (Vy € Y)(3z € A)~(zRy)}.
Definition 2.0.4. (1) For an ideal Z on X, define Cov(Z) = (X,Z, €).
(2) For an ideal Z on X, define Cof(Z) = (Z,Z, Q).
3) B = (w¥,w, <),

(4) B = (IP, 1P, ).



It is easy to see that add(Z) = b(Cof(Z)), cof(Z) = d(Cof(Z)), non(Z) = b(Cov(Z)), cov(Z) =
9(Cov(Z)) and b(B) = 0 and 9(B) = b. It is well-known that B and B'F are Tukey equivalent (for
example, see [Rlal(, Theorem 2.10]).

An important fact on the Tukey relation is the following.

Fact 2.0.5. For two relational system R and R/, if R is Tukey below R’, then ?(R) < ?(R') and
b(R’) < b(R) hold.

Definition 2.0.6. (1) Forc € (w+1)*,h € w*, define [Tc = [],,c,, ¢(n) and S(c, h) =[], o, [c(n)] =",

(2) For € J]c and ¢ € S(c,h), define z €* ¢ iff (V°n)(z(n) € p(n)) and define © € ¢ iff
(3%n)(z(n) € p(n)).

We define cardinal invariants c\g 5, and U\Z n» Which are called localization cardinals, and c? 5, and

2, , which are called anti-localization cardinals.

Definition 2.0.7. (1) Forc € (w+1)¥,h € w¥, define Le(e, h) = (] ¢, S(c, h), €*), cih =0(Lc(c, h))
and v7, = b(Lc(c, h)).

(2) Define wLe(c, h) = (IT¢, S(c, h),€™), ¢, = d(wLc(c, h)) and nah = b(wLc(c, h)).
Definition 2.0.8. (1) Define v" = min{n\;h se,h € w¥ limy, o0 h(n) = 00}
(2) Define ¢? = min{cih te,hew?, Y o, h(n)/ce(n) < oo}
We also use the following higher cardinal invariants.
Definition 2.0.9. Let x be a regular cardinal.
(1) For z,y € ", y dominates x if there is & < & such that for every 8 € [, k) we have z(8) < y(5).

(2) A C k" is a dominating family if for every = € k", there is y € A that dominates x. Let
0, = min{|A| : A C k" a dominating family}.

(3) A C k" is an unbounded family if for every = € k, there is y € A that is not dominated by z.
Let b, = min{|A| : A C " an unbounded family}.

(4) We induce the topology on the set 2% using <x-box topology. M, denotes the ideal of the all
r-unions of nowhere dense sets of 2%. Since M, is an ideal on 2", we can use the notion cov(M,)

etc.

Here let us recall briefly the terminology in descriptive set theory. A pointclass is a class of subsets
of Polish spaces. Examples are the class of all Borel subsets Borel, the class of all analytic sets 2},
the class of all coanalytic sets H?[ and the class of all subsets all. Recall the pointclasses in projective
hierarchy X! and IT': 3! is the class of all sets obtained by projection of IT}_; sets along w* and II}
is the class of all sets whose complement is 1. Moreover we define Al = X! NTI.. We sometimes
use the lightface version, such as X! and II}, of pointclasses of the projective hierarchy. For more
information on descriptive set theory, see [Mos0Y].

We require basic knowledge of forcing. We use the following well-known forcing notions.
Definition 2.0.10. (1) C = (2<¥,D), the Cohen forcing, which is forcing equivalent to Borel(2*) /M.

(2) B = Borel(2*)/N, the random forcing.



(3) The Laver forcing L. The conditions are all perfect subtrees ' C w<% such that all nodes
> stem(T") have infinitely many children. The order in Lis 7V < T iff 7" C T.

(4) For an ideal Z of a Polish space X, let Pz = Borel(X)/Z. This is called the idealized forcing of
7.

(5) For an ordinal &, let Coll(k) be the poset whose conditions are p such that p are finite partial
functions and dom(p) C k X w and for every (a,n) € dom(p) we have p(a,n) € a. The order is
q < p iff p C q. This is the Levy collapse.

Here we review basic notions of model theory.

Definition 2.0.11. (1) For a language £, two L-structures A and B are elementarily equivalent if
AE ¢ < B [E ¢ for every closed L-formula ¢.

(2) For a language L, a sequence (A; : ¢ € I) of L-structures and an ultrafilter U on I, we define
their ultraproduct [],.; A/U taking the quotient of the product set [];.;,
relation ¢ ~y <= {i €I : 2(i) = y(i)} € U. Evaluations of the symbols in £ are defined

A by the equivalence
naturally. When all A; are equal to the same structure A, the ultraproduct is called ultrapower
and the symbol AY denotes it.

(3) Let £ be a language and A be an L-structure. A set p(x) of L£L(A)-formulas with one variable
x is finitely satisfiable if every finite subset of p(z) has a solution in A. A is saturated if every
set p(x) of L(A)-formulas with one variable 2 which is finitely satisfiable and the elements in A

occurring in p(z) is of size <|.A| has a solution in .A.
We review basic notions of ultrafilters.
Definition 2.0.12. (1) An ultrafilter U on a set I is uniform if |A| = |I| for every A € U.

(2) Let U be a ultrafilter on k. We say U is regular if there is € C U of size x such that for every
i < K, the set {E € £ :i € E} is finite.

(3) For ultrafilters U,V on I, J respectively, we define
UxV={ACIxJ:{iel:{jeJ:(i,j) € A} eV} elU}.

U xV is called the Fubini product of U and V.

(4) An ultrafilter U on a set I is good if for every f: [I|<¥ — U satisfying the condition a C b implies
f(a) 2 f(b), there is a g: [I]<* — U such that for every a,b € [I]<“ we have g(a) C f(a) and
9(aUb) = g(a) N g(b).

(5) Let BI be the set of all ultrafilters on I and let SI \ I be the set of all non-principal ultrafilters

on I.

(6) For ultrafilters U,V on I, J, respectively, V <gk U if there is f: I — J such that
V={Y CcJ:fY)eu}.

This order is called Rudin—Keisler ordering.

10



We now recall basic definitions from determinacy. Basic information about it can be found in
[Mos0d, Chapter 6].
Definition 2.0.13. Let A C w*. Consider the following game associated with A: Player I and II play
in turn natural numbers.

Player 1 ‘ no No
Player 11 ‘ ni ns

Player I wins if (ng, n1,na,...) € A.
We say A is determined if either player has a winning strategy.
For a pointclass I', Det(I") is the statement that A is determined for every A € I'. This is the axiom

of determinacy for I'. AD stands for the full axiom of determinacy, that is Det(all).

11



Chapter 3

Goldstern’s principle

In [Gol93], Goldstern showed the following theorem: let (A, : € w®) be a family of Lebesgue measure
zero sets. Assume that this family is monotone in the sense that if z,x’ € w* satisfies z < z’ then
A, C Ay, Also assume that A = {(z,y) : y € A,} is a 7 set. Then |J
measure zero. Goldstern stated this theorem in terms of complements and applied it to uniform

A, has also Lebesgue

rewv

distribution theory. Our main focus is to study to what extent we can remove this Ei assumption.

3.1 Review of Goldstern’s proof

In [GolY3], Goldstern proved the following theorem. In the proof, he uses the Shoenfield absoluteness

theorem and the random forcing. As for these, see [Kan(OR, Chapter 3.

Theorem 3.1.1 (Goldstern). Let (Y, 1) be a Polish probability space. Let A C w® x Y be a X] set.
Assume that for each z € w¥,
Ay ={yeY :(x,y) € A}

has measure 0. Also, assume that (Vz,z’ € w¥)(z < 2’ = A, C Ay). Then | A, also has

measure 0.

reEWwY

Proof. We may assume that Y = 2“ and p is the usual measure of 2“ since for every Polish probability
space Y, there is a Borel isomorphism between measure 1 subsets of Y and 2“ that preserves measure.
Fix a defining formula and a parameter of A. In generic extensions if we write A, we refer to the
set defined by the formula and the parameter in the model.
Since A and |

that B := |J, . Az does not have measure 0. Then B has positive measure. By inner regularity of

pews Az are 2% sets, they are Lebesgue measurable. Toward a contradiction, assume
the measure, we can take a closed set K C B with positive measure. Take a Borel code k of K. We
take a random real r € 2% over V such that r € k.

Now for each x € w* NV, we have r € A,. In order to prove it, take a Borel code d, such that
A, C (fr and u((fz) = 0. But the condition A4, C dAz is H%. Thus, since the random real avoids dAm we
have r € A,.

Therefore we have

ré |J A

rEwYNV

12



But in Vr], it also holds that
(Vz,2' € w’)(x <2’ — A, C Ay)

since this formula is H%. Thus, by the assumption that A, is increasing and the fact that the random

r ¢ U A,

rewv

forcing is w®-bounding, this implies

Therefore, in Vr], it holds that
(3" € 2)(r" € k~ B)

because ' = r suffices. Recalling B is a X] set, this statement is written by a 33 formula. Therefore,
by Shoenfield’s absoluteness, it holds also in V. That is, there exists an 7' € 2¢ in V such that

r e K~ B.

This contradicts the choice of K. O

We define the principle GP(I"). We call the condition (Va,2’ € w*)(xz < 2’ = A, C A,/) the

monotonicity condition for A.

Definition 3.1.2. Let T be a pointclass. Then GP(T') means the following statement: Let (Y, ) be

a Polish probability space and A C w* x Y be in I". Assume the monotonicity condition for A. Also

suppose that (Vz,2’ € w¥)(x <2’ = A, C Ayr). Then |,
We define GP™(I") as GP(I") by replacing < by <*.

cww Az has also p-measure 0.

By Coldstern’s theorem, we have GP(X1).
For the reasons stated in the proof of Theorem B3-1°1, if the pointclass I' contains all Borel sets and
closed under Borel functions, then we may assume that the space (Y, u) in the definition of GP(T") is

the Cantor space.

Theorem 3.1.3. For every natural number n, if X! 1 1-B-absoluteness holds and every >l set is
Lebesgue measurable, then GP(X.) holds. In particular, if every 33 set is Lebesgue measurable, then
GP(X3) holds.

Proof. This is proved by the same argument as Theorem Z1-1. Recall that X3-B-absoluteness follows
from 33 measurability (see [BJ95, Theorem 9.2.12 and 9.3.8]). O

Clearly GP(T") implies GP*(T"). If we make a slight assumption on the pointclass I, then the converse

holds. We only consider such pointclasses.

Lemma 3.1.4. If a pointclass I' is closed under recursive substitution and projection along w, then
GP*(T") = GP(I).

Proof. Assume that A € I" and for each © € w¥, A, has p-measure 0 and that (Vz,z’ € w¥)(z <2’ =
A, C Ay). Put By = |J{Ay : « and y are almost equal}.

Then by assumption, B € T’ and for each x € w*, B, has p-measure 0 and that (Vz,z’ € w*)(z <*
x" = B, C By). Therefore, by GP™(T'), |, ¢« Bz is a measure 0 set. Thus |J, . Az is a measure 0
set. O
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3.2 GP(IT))
In this section, we prove that GP(TT}) holds.

Fact 3.2.1 ([Kec73; 1an67]). Let U € X1, U C w® x 2¥ be the universal for 37 subset of 2. Then
the relation p(U,) > r for € w® and r € R is %1,

Corollary 3.2.2. Let A C w” x 2¥ be a X set. Then the relation pu(A,) > r for z € w* and r € R
is E%.

Proof. Take universal sets U and U®) for 2% subsets of 2% and w® x 2%, respectively, with the
following coherent property: U(S(e,z),y) <= U®(e,x,y), where S is a recursively continuous
function. As for existence of such coherent universal sets, see [MosO4, Section 3.H]. Take e € w* such
that A(z,y) <= U®(e,z,y). Then we have

U(Az) >Tr = M(US(e,x)) >,

which is a X7 relation. O
Corollary 3.2.3. Let A C w® x 2¥ be a IT; set. Then the relation pu(A,) = 0 for z € w* is 21.

Proof. Let B = (w* x 2¥) \ A, which is $1 set. We have
WAL =0 = p(Bo) =1 < (¥)(u(By) > 1—1/2),

which is a E% relation. O
Theorem 3.2.4. GP(II}) holds.

Proof. Let A C w* x 2 be a II} set. Assume (A, : z € w*) is monotone and each A, is null. Take
a Laver real d over V. (Vo € w*)(u(A,) = 0) holds in V and this sentence is IT using Corollary
323. So in V[d], u(Ag) = 0 holds. Also monotonicity of (A, :z € w*) can be written as a II}
formula and holds in V, so it holds also in V[d]. Since d is a dominating real over V, we have
(Upewe 42)Y € Uzewwny A4z € Ag. Therefore (U, Az)Y is null in V[d]. Since Laver forcing

preserves Lebesgue outer measure, it holds that | A, isnullin V. O

rew¥

3.3 Consistency of ~GP(all)

In this section, we assume ZFC.

Definition 3.3.1. We call a sequence (4, : a < k) a null tower if it is an increasing sequence of

measure 0 sets such that its union does not have measure 0.
Theorem 3.3.2. If there is a null tower of length either b or 9, then =GP(all) holds.

Proof. In the case of b: By assumption, we take an increasing sequence (A, : a < b) of measure-0
sets such that (J,,
(T + o < b) with respect to <*. (This sequence is not necessarily cofinal.) For each x € w*, put

A, doesn’t have measure 0. We can take an increasing and unbounded sequence

a(z) =min{a < b:z, £° z}.

14



This is well-defined since (z4 : o < b) is unbounded. And then put
B, = Aa(m)~
Now each B, has measure 0 and we have

r<a =x<*a
= (Va)(zo <F 2= x4 <' )
S{aiz, £ 2"} C{az, €5 a}
= a(z) < a(z’)
= B, C B,.

Thus (B, : € w*) is increasing. Also we have |J ¢ . B: = Uy<p Aa- Indeed, it is obvious that the
left-hand side is contained in the right-hand side. To prove the reverse inclusion, it is sufficient to
each A, is contained in some B,. So fix « and consider x = z,. Since the sequence (x, : o < b) is
increasing, we have a < a(x). Thus A, C Ay ;) = B,.
Therefore, | J
In the case of d: As above, we can take an increasing sequence (4, : o < ?) of measure-0 sets such

that (J,.,
(o : o < D) with respect to <*. (This sequence is not necessarily increasing.)

weww Bz doesn’t have measure 0.

A, doesn’t have measure 0. By the definition of 9, we can take a dominating sequence

For each x € w®, put

a(z) =min{a <d:z <" z,}

and put
B, = Aa(m)~

One can easily show that (B, : x € w*) is increasing. Also we have |, ¢ . Bz = Uycp Aa- That the
left-hand side is contained in the right-hand side is obvious. To show the reverse inclusion, fix a. Since
the sequence (zg : f < ) is not a dominating family, we can find an € w* such that for all 5 < «,
x £* x5. Then a < a(x). Thus we have A, C Ay(y) = Be. O

Corollary 3.3.3. Assume that at least one of the following three conditions holds:
(1) add(NV) = b,
(2) non(N) =b or
(3) non(N) =d.

Then —GP(all) holds. In particular the continuum hypothesis implies =GP (all).

Proof. Clearly there are null towers of length both add(A) and non(N). So using Theorem 3372, we
have this corollary. O

Proposition 3.3.4. GP(all) implies add(M) < cof(M).

Proof. Assume add(M) = cof(M). Let (M, : a < k) be a cofinal increasing sequence of meager sets.

We can take such a sequence since add(M) = cof (M) = k. For each a < k, take x, € M1 \ M,.
Now recall from Rothberger’s theorem, there is a Tukey morphism (p,¥): (29, N, €) — (M, 2%, Z).

That is, there are ¢: 2¥ — M and ¢: 2 — A such that ¢(x) Z y implies x € ¥(y) for every x,y € 2v.
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Using this theorem, we put No = (55, ¥(2s) for o < k. Then (N, : o < k) is a sequence of null

sets of length x = b and its union is 2. O

In the following proposition, we show that GP(all) cannot be forced by finite support iteration of

ccc forcings.

Proposition 3.3.5. For every finite support iteration of ccc forcings (P, : a < v) with cf(rv) > Ny,
we have P, IF =GP(all).

Proof. Let G be a (V, P,) generic filter and work in V[G]. Let (¢, : a < cf(v)) be a sequence of Cohen
reals added cofinally by P,.
For a Cohen real ¢, let nullset(c) denote the standard null set constructed from c.

We have the following:
e For every z € w, there is o < cf(v) such that for every 5 > a we have ¢g £* .
e For every z € 2%, there is a < cf(v) such that for every § > a we have z € nullset(cg).

For z € w*, we let i = min{a : (V3 > a)(cs £* 2)} and let A, = (5., nullset(cs).
We can easily show that each A, is a null set, the sequence (A, : x € w*) is increasing and the

union |J A, is equal to 2¥. Therefore, (A, : x € w¥) is a witness of ~GP(all). O

TEWY

3.4 Consistency of GP(all)

In this section, as in the previous section, we assume ZFC. To obtain a model of GP(all), add(N) # b,
non(N) # b, non(N) # 0 and add(M) # cof (M) need to hold. A natural model in which they hold

is the Laver model. In this section, we will see that GP(all) actually holds in the Laver model.
Theorem 3.4.1. Assume that b =0 and let both of these be k. Then the following are equivalent.
(1) There is a null tower of length .
(2) —GP(all).

Proof. That (1) implies (2) is shown in Theorem B372.

We now prove that (2) implies (1). Assume that ~GP*(all). Then we can take A C w* x 2% such
that each section A, has measure 0 and (Vz,2’ € w*)(x <* 2’ = A, C Ayr) holds and B = | ¢, 4z
does not have measure 0. By b = 0 = k, we can take a cofinal increasing sequence (x, : @ < k) with
respect to <*. For each o < k, put C, = A, . Then each C, has measure 0. Since a — z, is
increasing and x — A, is increasing, (C,, : a < k) is also increasing. Also, since (z,, : a < k) is cofinal,
we have B = |J,.,. Ca- S0 Uycp
length «. O

C,, does not have measure 0. Thus (C, : @ < k) is a null tower of

The following lemma and theorem requires knowledge of proper forcing. See [Gol97].

Lemma 3.4.2. Assume CH. Let (P,, Qa:a< wa) be a countable support iteration of proper forcing
notions such that
Fo [Qa| < ¢ (for all a < ws).

Let (X, : @ < ws) be a sequence of P,,-names such that

ko, (Va < wy)(X, has measure 0).
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Then the set

C={a<wy:cf(a)=w &
o, (XN V[Ga]: B < a) € V[Ga] & (VB < a)(Xs N V[Gq)] has measure 0)V1F])}.

contains a wi-club set in ws.

Proof. This is an example of a reflection argument. See also [Hall2, Chapter 26].

Take a sequence (¢g : f < wg) of names of Borel codes such that
Fw, (V8 < wa)(Xs C és & ¢ has measure 0).

For each 3 < ws, take 75 < wo such that ¢g is a P, -name.

Since for each a < ws, Ik, CH, we can take a sequence (£% : ¢ < wy) such that
IFo (25 14 < wy) is an enumeration of 27
. For each o, f < wy and i < wy, take a maximal antichain A?’B such that
AYP Cipe P, plif e Xgorplkil ¢ Xg}.
Since P,,, has ws-cc, we can take 5?’6 < wsy such that
Jfsupt(p) : p € A7} € 677,
We define a function f from ws into wo as follows:
f(v) =sup ({'yg B< VU6 o, B< i< wl})

Put
C'={a<wy:cf(a) =w, (VW< a)f(v) <a}l.

Then clearly C’ is wi-club set. So it suffices to show that C’' C C.
Let a € C’ and we shall prove a € C. Fix 8 < . Define a Py-name Y by

o <V = |J {32 :(p 3 € Xp)V
a’'<a

for some p € A?/’B &plaeG). (%)

We claim that Ik, X3 N V[G,] =Y. In order to prove this, take a (V, P,,)-generic filter G. In
V[G], take z € XBG N V[G,]. Since no new real is added at stage «, we can take o’ < « such that
& € V[Gy]. Thus there is i < w; such that z = (&%), Since ()% € Xg, in V, we can take a
peGN A?/’B such that p IF :i:f‘/ € X,@. We have p € A?‘/’ﬂ. Thus z is an element of Y©.

Conversely, take an element = of YE. So we can take & < o, i <wy and p € F,,, such that

v = (@)% (pIF i € Xp)V.pe AP &plae G

Clearly we have z € V[Gqo] C V[Ga]. Suppose that (i¢)C ¢ XﬁG Then we can take ¢ € G such
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that ¢ - 2% ¢ Xgz. By the maximality of A?/’ﬁ, we can take r € A?/’B N G. Since both ¢ and r
are elements of GG, ¢ and r are compatible. So 7 IF x'f’l ¢ X g. Thus p and r are incompatible. But
supt(p),supt(r) C a. Sop [ a and r | « are incompatible. But they are elements of G,,. It contradicts
that G is a (V, P,)-generic filter.

Thus we have Ik, X5 NV[G.] € V[Ga].

By performing the above operations simultaneously with respect to the g, we have
o, (X NV[Ga]: B < a) € V[Gal.
Since we have I, Xﬁ - f:g, it holds that
ko, “X5NV[G4] C ép has measure 0.

Therefore, we have o € C. O
Recall that L denotes the Laver forcing. As for basic properties of Laver forcing, see [B.JY5].

Theorem 3.4.3. Assume CH. Let (P,, Qa : & < wa) be the countable support iteration such that
ko Qo =L (for all o < wy).

Then
Ik, GP(all).

In particular, if ZFC is consistent then so is ZFC + GP(all).

Proof. By Theorem 3471 and the fact that I, b =0 = wy, it is sufficient to show that
Ik, “There is no null tower of length ws”.

Let G be a (V, P,,)-generic filter. In V[G], consider an increasing sequence (A, : o < wsy) of measure

0 sets. By Lemma 3477, we can find a stationary set S C wy such that for all « € S, c¢f(a) = wy and
(AgNVI[Ga]: B < @) € V[Ga] & (VB < @)((As N V[G,] has measure 0)V[Ca]),

Fix a € S. Put By == Uz, As N V[Ga]. Then we have U, ., Ba = U,<w, Aa- We now prove that
B, is also a measure 0 set in V[G,]. Let o’ be the successor of a in S. Then B, is a measure 0 set in
V[Gy]. Since the quotient forcing P, /G, is a countable suppport iteration of the Laver forcing, this
forcing preserves positive outer measure. So B, is also a measure 0 set in V[G,].

For each a € S, take a Borel code ¢, € w* of a measure 0 set such that B, C &, in V[G,]. Since
cf(a) = wn, each ¢, appears a prior stage. Then by Fodor’s lemma, we can take a stationary set
S’ C wy that is contained by S and 8 < wq such that (Vo € §7)(cy € V[Gg]). But the number of reals
in V[Gg] is Ny, so we can take T' C S’ unbounded in wy and ¢ such that (Va € T')(cq = ¢). Then we
have |J Ay Céin VIG]. So U

A, has measure 0. O

a<wsz a<wsz

Corollary 3.4.4. Con(ZFC) — Con(ZFC + GP(projective) + =GP (all)). Here, projective = >, >

Proof. Assume CH and let P be the forcing poset from Theorem B34°3, that is the countable support

iteration of Laver forcing notions of length ws. Then we have P I GP(all). In particular we have
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P IF GP(projective). Let Q be a P-name of the poset
Fn(wy,2,w;) = {p: p is a countable partial function from wy to 2}

with the reverse inclusion order. It is well-known that provably Fn(ws,2,w;) adds no new reals and
forces CH. So we have P x Q I CH. Since P IF GP(projective) and P I+ “Q adds no new reals”, we
have P * Q I GP(projective). O

3.5 Consequences of determinacy

In this section, we don’t assume the axiom of choice and we will discuss a consequence of determinacy

for Goldstern’s principle.

Theorem 3.5.1. Let I' be a pointclass that contains all Borel subsets and is closed under Borel sub-
stitution. Assume Det(I"). Then GP(proj(I')) holds, where proj(T") is the pointclass of all projections
along w* of a set in I'.

In particular, AD implies GP(all). Also Det(II}) implies GP(E%H) for every n > 1.

Proof. This proof is based on Harrington’s covering game. See also [Mos0Y, Exercise 6A.17]. In this
proof, we use the following notation: for j < n < w,

n—1,

" (ww) ,(Io, v a'rn—l) = (':607' sy L1y Ljply - axn—l)'

projj : (w*)

Fix B C w* x w*” x 2¢ and A = projs(B) such that each section A, has measure 0, (Vz,z’ € w*)(x <

' = A, C Ayr). Also let € > 0. We have to show that the outer measure p*(proj(A)) is less than or
equal to €.

Fix a Borel isomorphism 7: 2% — w®. Consider the following game: At stage n, player I plays

(Snytn,un) € {0,1}3. Player II then plays a finite union G,, of basic open sets such that u(G,) <

£/16"T1. In this game, we define that player I wins if and only if (z,2,y) € B and y ¢ U, .., Gn,

new

where z = 7(sg, s1,...),y = (to, t1,...) and z = 7(ug, u1, ... ).

Player I (So,to,uO) (sl,tl,ul) (52,t2,u2)
N SN N
Go Gy G

Player 11 2

Assume that player I has a winning strategy o. Put
C={(z2,y) € wxw?x2": (I(Go,G1,...))((2,2,y) is the play of I along o against (Go,G1,...))}.

Then clearly C'is a 31 set. Since player I wins, we have C' C B. So we have projs(C) C proj3(B) = A.
So each (projj(C)), C A, has measure 0. For z € w*, put D, = |J,,(proj3(C))s, which is a X}
set. Since (projs(C)), C A, each D, has measure 0. And we have 2’ <z implies D, C D,.

Thus, by GP(X7), proj2(D) has measure 0. So proj2(projs(C)) has also measure 0. Therefore we
can take (Go, Gy, ...) such that projd(proj3(C)) € U,e,, Gn and pu(G,) < /16™1.

Let (z,z,y) be the play along o against (Go,G1,...), then (z,z,y) € C and y ¢ |
contradicts to projg(projs(C)) € U,e,, G-

G,,. This

new
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So player I doesn’t have a winning strategy. Therefore, by Det(I"), player II has a winning strategy
7. Put

E= U{G” : (Go,...,Gy) is the play along 7 against some (sg, to, Ug - - -, Sy bns Un ) }-

Then we have proja(projs(B)) € E. In order to check this, let (z,2,y) € B. Consider the player I's

play (z,2,y). Let (Go,G1,...) be the play along 7 against (z,z,y). Since II wins, y € J,,c,, Gn C E.
Also we have
n+1 € _
WE) < ZS 167+
Therefore we have p*(projz(A)) < u(E) < e. O

3.6 Consequences of large cardinals

In this section, using large cardinals, we separate GP(X,,, ;) and GP(X,,) for every n > 2.
For a pointclass I', recall that < is a I'-good wellordering of the reals if it is a wellordering of the reals
of order-type wy, it is in I and the relation {(x,y) :  codes the initial segment below y with respect to <}

isin I'.

Fact 3.6.1 ([BWY7] and [Stevs]). (1) If ZFC is consistent, then so is ZFC plus X3 Lebesgue mea-
surability plus “there is a 251,) good wellordering of the reals of length w;”.

(2) Assume that there are n many Woodin cardinals. Then there is an inner model M,, of ZFC that

models Det(X!) and “there is a E:LJFQ good wellordering of the reals”.

Lemma 3.6.2. Let n > 2. If there is a E}l good wellordering < of the reals of length wy, then there

. . . . . 1
is a cofinal increasing sequence of w* whose image is A,.

Proof. We define a function G': [w*]<N0 — w* by
G(S) = <-minimum z such that x dominates all elements in S
We define a sequence (z, : @ < wy) of reals in w* by
zo =G{zp: B < a}) (for a <wy).

Then we put
D={zq:a<uw}

First we claim that D is 3}. Using the usual technique that writes a recursive construction in the

way of the existence of an approximation, we have

€D —= Fa<w)3F:a+1—w¥)
(VB <a)(F(B) =G(F I B)) &z = F(a)].
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Eliminating ordinal variables, we have

x €D = (32)(Fw)(3f: w = wv)
[w codes the initial segment below z &

(Vk)(3w")[w’ codes the initial segment below w(k) &

fk) =G{f(@): Fj (w)i = (w);)})] &
x = G(ran f)].

Note that the expression = G(ran f) can be written as a 3. formula since

x=G(ran f) < (VE)[f(k) <"z &
Jw(w codes the initial segment below z & (Ym)—(VE) f(k) <* (w)m)]
Similarly, the expression f(k) = G({f(i) : 3j ((w); = (w’);)}) can be also written as a ., formula.
Therefore D is 3.
Next, we show that D is IT}. As with the above claim, we have
€D <= (Fa<w)3F:a+1—-wv)
(VB <a)(F(B) =G(F | B)) &a <" Fla) & (V8 < a)(z # F(B))].

By the same transform of formulas in the above claim, we have that =D is 3. O

Lemma 3.6.3. Let n > 2. If there is a E,ll good wellordering < of the reals of length w;, then
-GP(A}) holds.

Proof. Let D denote the set defined in Lemma B62. We define a set A by
A={(z,y) € w* X w” :y < z for the minimum z € D that dominates z}.
Then we have

(z,y) € A <= (32)(Fw)
[w codes the initial segment below z & z € D &
<"z &VE) (W) € D= a L (W) &

y 42]
. 1 .
So A is 3,,. Moreover, since we have

(z,y) € A <= (Vz)(Vw)
[[w codes the initial segment below z & z € D &
<"z &Vk)((w)r € D =z £ (w))] —
y <2,

it is also true that A is IIL. So A is AL.

Since each A, is countable and |J A, = w®, this A witnesses “GP(AL). O

rewv
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Corollary 3.6.4. (1) If ZFC is consistent, then so is ZFC + GP(X3) + -GP(A3).

(2) For every n > 1, if ZFC + (there are n many Woodin cardinals) is consistent, then so is ZFC 4
GP(Z;,11) + ~GP(A, ).

Proof. As for (1), combine Fact 861 (1

361 (2), Theorem 8571 and Lemma B

Theorem 3713 and Lemma 36-3. To show (2), combine Fact

);
3. O

3.7 GP(all) in Solovay models

Now that we know that AD implies GP(all), it is natural to ask whether GP(all) holds in Solovay
models. In this section, we will solve this question affirmatively.
Basic information about Solovay models can be found in [Kan(X, Chapter 3].

Let us recall that Coll,; denotes the Levy collapse.

Definition 3.7.1. (1) L(R)M is a Solovay model over V (in the usual sense) if M = V[G] for some

inaccessible cardinal x and (V, Coll,) generic filter G.
(2) L(R)M is a Solovay model over V in the weak sense if the following 2 conditions hold in M:

(a) For every x € R, wy is an inaccessible cardinal in Vz].

(b) For every x € R, Vz] is a generic extension of V' by some poset in V', which is countable in
M.

Fact 3.7.2 (Woodin, see [BB04, Lemma 1.2]). If L(R)* is a Solovay model over V in the weak sense
then there is a forcing poset W in M such that W adds no new reals and

W Ik “L(R)M is a Solovay model over V (in the usual sense)”.

Fact 3.7.3 ([BB04, Theorem 2.4]). Suppose that L(R)* is a Solovay model over V in the weak sense
and P is a strongly—Eé absolutely-ccc poset in M. Let G be a (M, P) generic filter. Then L(R)M[C] is

also a Solovay model in V in the weak sense.

We don’t define the terminology “strongly—E:l), absolutely-ccc poset” here. But the random forcing
is such a poset and we will use only the random forcing when applying Fact 8773.

Lemma 3.7.4. Let M, N be models satisfying V' C M C N. Assume that the L(R) of each of M and
N are Solovay models over V in the weak sense. Then for every formula ¢(v) in the language of set
theory Lc = {€} and real r in M, the assertion “L(R) = ¢(r)” is absolute between M and N.

Proof. By Fact 372, we may assume that L(R)™ and L(R)" are Solovay models over V in the usual

sense. By universality and homogeneity of the Levy collapse, we have

M = “L(R) = ¢(r)” <= V[r] | [Coll, IF “L(R) k= ¢(r)7]
= N “L(R) = o(r)”

O

Theorem 3.7.5. Let  be an inaccessible cardinal and G be a (V, Coll,,) generic filter. Then L(R)Y €]
satisfies GP(all). That is, every Solovay model satisfies GP(all).
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Proof. Let A C w* x 2¢ in L(R)VI[C]. Take a formula ¢ and an ordinal o such that

A={(z,y) : oo, z,y)}F®

In L(R)VI¢! assume that
(1) (Vo € w?)(3ey € w?)(cy is a Borel code for a measure 0 set & A, C &)
(2) (Va,2’ ew¥)(z <z’ — A, C Ay).

Using the axiom of choice in V[G] we can choose such a family (¢, : € w*). Note that this family is
not necessarily in L(R)Y[¢],

Since every set of reals is measurable in L(R)VI¢) |, _ . A, is measurable in L(R)YI%). Now we
assume that the measure is positive and take a closed code d in L(R)VIC such that u(d) > 0 and
d C U, A in L(R)VICL

Take a random real r over V|[G] with r € d. Then by Lemma 374, we have in L(R)V5["]

(1) (Vo € w N L(R)VIEN (A, C é,), and
(2) (Vo,2’ ew?)(xz <a’ — Ay T Ay).

By randomness, we have 7 ¢ ¢, for all z € w*NL(R)VI[]. But (2’) and the fact that the random forcing
is w*-bounding imply 7 ¢ A, for all z € w* in V[G][r]. Thus we have d~ Usews Az # @ in L(R)VICIT,
Then using Lemma 374 again, we have d Usecww Az # D in L(R)VIE] Tt is a contradiction to the
choice of d. O

3.8 A necessary condition for GP(A})

From now on, we again assume ZFC.
As mentioned in Section 31, a sufficient condition for GP(X3) is every X3 set is Lebesgue measur-
able, or equivalently for every real a, there is an amoeba real over L[a]. (This equivalence was proved

by Solovay, see [B195, Theorem 9.3.1]). In this section we give a necessary condition for GP(AJ).

Fact 3.8.1 (Spector-Gandy, see [CY 15, Propositon 4.4.3]). Let A be a set of reals. Then A is a %}
set iff there is a 3, formula ¢ such that

€A = (L raz],€) F p(z).

1
The following is well-known.

Lemma 3.8.2. Let M be a model of ZFC contained by V. And assume that the set {y € 2¢ :

y is a random real over M} has measure 1. Then there is a dominating real over M.

Proof. Let nBC denote the set of all Borel codes for measure 0 Borel sets. There is an absolute Tukey
morphism (¢, ) that witnesses add(N) < b. That is, (p,1)) satisfies ¢: w* — nBC, ¢: nBC — w®,

and (Vz € w?)(Vy € nBC)(p(z) C § — = <* ¢¥(y)). By absoluteness, if 2 € w* N M, then we have
p(r) € M. Now
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has measure 0 since this is contained in {y € 2“ : y is not a random real over M} by the definition of

randomness. Take a z € nBC such that

U el ce

rzEWwYNM

Now put w = ¥(z). Then using the fact that (p,1) is Tukey morphism, we have w is a dominating

real over M. O

Theorem 3.8.3. For every real a, GP(Al(a)) implies there is a dominating real over L[a]. Thus,
GP(A3}) implies for every real a, there is a dominating real over L[a]. In particular V = L implies
-GP(A}).

Proof. Fix a real a. Assume that L[a] N w* is unbounded. Note that, in this situation, we have
wlL[a] = wy. Let (24 : o <wi) be a cofinal increasing sequence in w” N L]a]. We can take this sequence
with a Aq(a) definition by using a Aj(a) canonical wellordering of L[a] Nw*. Note that this sequence
is unbounded in V Nw" by assumption.

Take a sequence (¢, : o < wq) consisting of all Borel codes for measure 0 Borel sets in Lla]. As
above, we can take this sequence with a A;(a) definition.

For each x € w®, put

a(z) =min{a : 2, £F z}.

This is well-defined since (z4 : o < wy) is unbounded in V Nw®. Also put

B<a(z)
Then the set A is Al(a), by Spector-Gandy theorem and the following equations:
(2,y) € w” x 291 (38 < a(x)) y € ¢}

{
{(z,y) ew” x2¥: Ba)(za £" 2 & (VB < a)(zp <" ) & (B < a)(y € ¢p))}
{(z,y) e w” x2¥: (Va)(zo £" 2 & (V8 < a)(zp <" 2)) = (36 < a)(y € ¢3))}.

Note that each A, (z € w*) is a measure 0 set since it is a countable union of measure 0 sets. And
we can easily observe that x <* 2z’ implies A, C A,/.
Since o < a(x4), we have J,c,o Az = U éy. Thus it is sufficient to show that C' := |

is not a measure 0 set. In order to show this, assume that C' is a measure 0 set. Note that if a

a<wi a<wi Ca

real y € 2¥ does not belong to C, then y is a random real over L[a] since the sequence (¢, : @ < wy)
enumerates all measure 0 Borel codes in La]. So since we assumed C' is measure 0, the set {y € 2 :
y is a random real over L[a]} has measure 1. Thus by Lemma B82, there is a dominating real over
Lla]. This contradicts the assumption.

So we constructed a set A that violates GP(A}). This finishes the proof. O

Therefore, we obtain the following diagram of implications.
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(Va € R)(3z € w¥)

(z is a dominating real over L[a])

/

GP(Aj)

»3-LM ——  XJ-BP

GP(x3)

Here, 2§—LM means E%—Lebesgue measurability and Eé—BP means 2%—Baire property. 2§—LM and
GP(X3) can be separated since the Laver model over L satisfies GP(all) but not X3-LM.

3.9 Open problems

The following open problems remain.
Problem 3.9.1. (1) Is ZFC + (¢ > R3) + GP(all) consistent?
(2) Is ZFC + (b < 9) + GP(all) consistent?
(3) Can GP(X3}) and GP(A}) be separated?
(4) Can GP(A}) and (Va € R)(3z € w*)(z is a dominating real over L[a]) be separated?
(5) Is there a model of ZF satisfying that every set of reals is measurable and —GP(all)?

(6) Is it possible to separate GP(X} ;) and GP(X;,,) for some (or every) n > 3 without large cardi-
nals?
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Chapter 4

Hausdorff measures

Hausdorff measures are important tools for measuring Lebesgue null sets. We study cardinal invariants
determined by the Hausdorff measure zero ideals N/ for gauge functions f. In particular, we study
cardinal invariants of the s-dimensional Hausdorff measure zero ideal N'® for s > 0 and cardinal
invariants of the Hausdorff dimension zero ideal HDZ.

A classical result by Besicovitch in [Res33] is that the strong measure zero ideal SN is the intersec-
tion of all Hausdorff measure zero ideals N'/. On the other hand, Yorioka introduced Yorioka ideals in
[Yor(?] to analyze the strong measure zero ideal SA” and showed that their intersection is also equal to

SN. Our main results are the relationship between Hausdorff measure zero ideals and Yorioka ideals

many covering numbers and many uniformity number of Hausdorff measure zero ideals (Section 475
and 46).

As for other sections, in Section 471, we show cardinal invariants of the ideal HDZ do not change if
we change the underlying metric space from the Cantor space to the Euclidean space RY. In Section
473, we consider the additivity and the cofinality of HDZ. In Section 474, we separate the uniformity
of the null ideal and the uniformity of the s-dimensional Hausdorff measure 0 ideal N'® using the
Mathias forcing, which simplifies the proof in [SS05]. In Section 477, we consider Goldstern’s principle
of Hausdorff measures, which generalizes the discussion in Chapter 3. In Section 4°8, we show that
Laver forcing preserves Hausdorff measures. Lastly, in Section 49, we introduce an amoeba type
forcing of Hausdorff measures.

Only in this chapter we use the following notation.

Definition 4.0.1. For functions f,g: w — R, define f +g,f —g,f-g, f/g, f? and \/f as follows:

id denotes the identity function from a set into itself. We often use this notation when the domain is
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w. We use the notation 2 as the constant function returning 2.
For functions f,g: w — w,let f¥9(n) = |[f(n)]=9™)].

In the rest of this section, we review basic definitions of Hausdorff measures.

Definition 4.0.2. A function f: [0,00) — [0,00) is a gauge function if f(0) = 0,lim,_,q f(z) = 0 and
f is nondecreasing.

Let X be a metric space. For A C X, f a gauge function and ¢ € (0, 0], we define
HI(A) = inf{) _ f(diam(Cy,)) : Cp € X (for n € w) with A C | ] C,, and (Vn)(diam(C,,) < )}
n=0 new

Next, for A C X and f a gauge function, we define

HI(A) = lim HI(A).

We call #f(A) the Hausdorff measure with gauge function f. In particular, for A C X and s > 0, let
H(A) = HPV:(A)
where pow (z) = z*. For A C X, let
dimp(A) = sup{s : H*(A) = oo} = inf{s : H*(4) = 0}.

We call dimpy(A) the Hausdorff dimension of A.
We metrize the Cantor space 2 by

0 (if z = y),

d(z,y) = .
9— min{n:z(n)#y(n)} (otherwise).

Definition 4.0.3. (1) For a metric space X, define HDZx = {A C X : dimy(A) = 0}.
(2) Define HDZ = HDZs..

Definition 4.0.4. For a metric space X and a gauge function f, define N)j; ={ACX:H/(A) =0}
Especially we define N'f = Nl For s > 0, define N5 = N2 and N'& = V™.

Remark 4.0.5. (1) N1 =N.
(2) HDZ = ),y N°.
Definition 4.0.6. For o € (2<%)¥, define hto: w — w and [0]s C 2¢ by

(hto)(n) = |o(n)| and

[0]oe = {z €29 : (3®n)o(n) C z}.

For g € w*, define
= {AC2: (30 € @) (hto = g & A C [o]o0)}.

For f,g € w®, define
f<g < (Vk €ew)(fopow, <*g)
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For f € w® increasing, define

Iy = |J 7,

g>f

We call Z; the Yorioka ideal for f.

4.1 Stability under changing underlying spaces

In this section, we prove that cardinal invariants of the ideal HDZ do not change if we change the

underlying metric space from the Cantor space to the Euclidean space R?.

Definition 4.1.1. Let X and Y be metric spaces and a,¢ > 0. A map f: X — Y is said to be
a-Holder with constant c if for all z, 2’ € X we have d(f(z), f(z')) < c-d(z,2")* Amap f: X =Y
is said to be a-co-Holder with constant c if for all z, 2’ € X we have d(f(x), f(z')) > ¢-d(z,2")*. A
map f: X — Y is said to be a-bi-Hélder with constants c1, ¢y if it is both a-Hoélder with constant c¢;
and a-co-Holder with constant cs.

Proposition 4.1.2. Let X and Y be metric spaces and a > 0.

(1) If there is a-Holder map f: X — Y with constant ¢, then for all s > 0 we have H*/*(f(X)) <
¢*/*H3(X) and dimy f(X) < (1/a) dimy X.

(2) If there is a-co-Holder map f: X — Y with constant ¢, then for all s > 0 we have H*/*(f(X)) >
c*/*H*(X) and dimg f(X) > (1/a) dimg X.

(3) If there is a-bi-Holder map f: X — Y with constant cj,co, then for all s > 0 we have
U (X)) < 1 (F(X)) < o “H5(X) and dimy f(X) = (1/a) dimyg X.

Proof. Ttem 1. Let ¢ > 0 and (C,, : n € w) be a d-cover of X, that is X C J,, Cp, and diam(C),) <9
for all n. Then (f(Cy,) : n € w) is a cover of f(X) and the diameter of each member satisfies

diam(f(Cp)) < ¢-diam(C,,)* < c¢-§Y =:¢.
So (f(Cy) : m € w) is a e-cover of f(X). Thus

H(f(X)) < Zdiam(f(cn))s/a < ch/a - diam(C,,)”.

Take the infimum for (C,,) we get the following.
H/(F(X) < /" HG(X),

Letting § tend to 0, we have
H(F(X)) < /1 (X).

In order to prove the dimension inequality, Let s > dimg X. Then H*(X) = 0, so H*/*(f(X)) is
also equal to 0. Thus s/a > dimy f(X).

Item 2. Observe that every a-co-Holder map f: X — Y with constant c is injective and the inverse
map f~': f(X) — X is (1/a)-Hélder map with constant ¢~/ and use item 1.

Item 3. Combine Item 1 and 2. O
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Proposition 4.1.3. Let X,Y, X’ Y’ be metric spaces and o > 0.
(1) If f: X - X’ and g: Y — Y’ are a-Holder maps, then f X g: X XY — X' x Y’ is also an

a-Holder map.

(2) If f: X - X' and g: Y — Y’ are a-co-Holder maps, then f x g: X xY — X’ x Y’ is also an
a-co-Holder map.

Proof. We now adopt the max metric as a metric of product space:

d((z1,y1), (2, y2)) = max{d(z1,22),d(y1,y2)} (1,22 € X, 91,92 € Y).

Note that the above metric and other two metrics d(x1,x2) + d(y1,y2) and \/d(z1,22)2 + d(y1,y2)?
are Lipschitz equivalent.

By the assumption, there are c1,cy > 0 such that

d(f(z1), f(z2)) < crd(z1,22)%,
d(g(y1), 9(y2)) < cad(y1,y2)".

Then, we have

max{d(f(z1), f(x2)),d(g(y1),9(y2))} < max{ci, co} max{d(z1,x2),d(y1,y2)}*

So item (1) is proven. Item (2) can be shown by the same argument. O

Proposition 4.1.4. For every a € (1,00), there is a a-co-Holder map f: 2 — [0, 1].
Proof. Put f=2"% Then we have 0 < § < 1/2. Define f: 2 — [0, 1] by
flz)=(1-8)Y B z(n).
new

Let « # y € 2¥ and ng = min{n € w : z(n) # y(n)}. Then

d(f(x), f(y)) = (1= B)|>_ B™(x(n) —y(n))

> (1-8) (W% —1 > B"(=(n) —y(n))D
> (1 p)(B™ — gt /(1 - B))

= (1-28)8™

=(1- 25)(2—"0)—1%2/3

= (1—28)(d(z,y))".

Proposition 4.1.5. There is a 1-co-Hdlder map f: [0, 1] — 2“.
Proof. Define g: 2¥ — [0,1] by

o) = B

new
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Let f: [0,1] — 2% satisfies go f = id. In order to show f is a 1-co-Holder map, it suffices to prove that

(Vz,y € 29)(d(g(z), 9(y)) < d(z,y)).

Fix z,y € 2. If x = y, then it is obvious. So assume that x # y and let ny be the minimum n that
z(n) # y(n). Then

z(n) —y(n)
d(g(x),g(y)) = Z T on+1
new
1 1
< 2n0+1 + Z 2n+1
n>ng
= 1/2"0
= d(z,y).
O
Fact 4.1.6. For every d € w ~ {0}, we have dimy ([0, 1]¢) = d.
Proposition 4.1.7. dimp(2¥) = 1.
Proof. By Proposition 4-1°5,
dimg(2¢) > dimg[0,1] = 1.
On the other hand, for every a > 1, by Proposition 414,
dimg (2¢) < adimg[0,1] = a.
So dimp(2¥) < 1.
O

Proposition 4.1.8. For every d € w \ {0}, there is a (1/d)-bi-Holder map f: 2* — (2+)%.

Proof. Define f by
f@)(@)(m) =xz(m-d+1i) (for z € 2¥i < d and m € w).

Let z # y € 2 and ng = min{n € w : z(n) # y(n)}. And take iy < ng and my € w such that

o = mo - d -+ io. Then f(z)(io)(mo) # £(y)(io)(mo) and f(z)(i)(m) = F(y)(3)(m) for any i < no and
m < mg. SO

Now we have
dmg < ng < d(mg + 1)

So
no/d— 1 S mo S no/d

Thus
d(z,y)* < d(f(x), f(y)) < 2d(z,y)"".
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Proposition 4.1.9. Let f: X — Y be an a-co-Hdlder map for some e > 0. Then
non(HDZx) > non(HDZy) and cov(HDZx) < cov(HDZy).

Proof. Define a Tukey morphism (f, f~1) : Cov(HDZx) — Cov(HDZy). Since f~! is 1/a-Hélder,
this satisfies
A€ HDZy = f~!(A) € HDZy. O

Lemma 4.1.10. For every d € w~{0}, non(HDZg yja) = non(HDZga) and cov(HDZ 1)a) = cov(HDZga).

Proof. Since [0,1]7 C R?, it is clear that non(HDZga) < non(HDZ[g 4j4) and cov(HDZ{g 1ja) < cov(HDZga).

Now we show non(HDZg 1j¢) < non(HDZga). Let A ¢ HDZga. Then by o-additivity of Hausdorff
measures, we have AN[—n,n] ¢ HDZ|_,, ,ja for some n € w. Then |AN[—n,n]?| > non(HDZ|_,, ,ja) =
non(HDZ_4 1)a). So |A] > non(HDZ_; yja). Thus non(HDZga) > non(HDZ 1a).

Next we show cov(HDZga) < cov(HDZg qj4). Take F C HDZg 1j4 of size cov(HDZ[g 1j4) such that
UF = [0,1]¢. Define

G=A{ U scale, “(X) : X € F},
new

where scale,,: [0,1]9 — [-n,n]%x — 2nx — (n,n,...,n). Then G is a subset of HDZga and of size
< cov(HDZ[y 1j4) and satisfies [ JG = R%. O

Theorem 4.1.11. For all d € w ~\ {0}, non(HDZ) = non(HDZRa) and cov(HDZ) = cov(HDZRa).

Proof. By Lemma #4110, it suffices to show that non(HDZ) = non(HDZj,j«) and cov(HDZ) =
cov(HDZ[g 1)a).

By Proposition @175, there is a 1-co-Holder [0,1] — 2¥. Then by Proposition 471-3, there is a
1-co-Hélder [0,1]¢ — (2¢)?. By Proposition 418, there is a d-bi-Holder (2*)? — 2¢. Composing these
maps, we obtain d-co-Holder map [0,1] — 2¥. So by Proposition 19, we have non(HDZg 1j4) >
non(HDZ) and cov(HDZjg j4) < cov(HDZ).

On the other hand by Proposition &-1°4, there is a 2-co-Holder map 2¢ — [0, 1]. Then by Proposition
413, there is a 2-co-Holder (2¢)% — ([0,1]). By Proposition &%, there is a (1/d)-bi-Hélder 2% —
2¢)4. Composing these maps, we obtain (2/d)-co-Hélder map 2¢ — [0,1]¢. So by Proposition 419,
we have non(HDZ) > non(HDZ, 1)a) and cov(HDZ) < cov(HDZ[g 1)a). O

—~

Conjecture 4.1.12. (1) For every compact Polish space X with 0 < H*(X) < oo for some s > 0,
non(HDZ x) = non(HDZ) and cov(HDZx) = cov(HDZ).

4.2 Hausdorff measure zero ideals and Yorioka ideals

Yorioka ideals were introduced in order to analyze the strong measure zero ideal by Yorioka [Yor02].
Indeed, the intersection of all Yorioka ideals is equal to the strong measure zero ideal. On the other
hand, as a classic result, Besicovitch showed in [Res33] that the intersection of all Hausdorff measure
zero ideals is also equal to the strong measure zero ideal. In this section, we investigate the relation

between Yorioka ideals and Hausdorfl measure zero ideals.

Lemma 4.2.1. For a gauge function f and A C X, if H (A) = 0, then H/(A) = 0.
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Proof. By H{ (A) = 0, we have

(Ve > 0)(3(Cnin e w))(AC|JCn &) fdiam(Cy)) < e). (4.1)

Let £,0 > 0. Take ¢’ < ¢ such that f(¢') < f(d). Put &’ = min{e, f(¢')}. Then by (471), we can take
(Cp, : m € w) such that

> f(diam(Cy,)) < €.
Then for each n, we have
f(diam(Cy)) < " < f(8") < £(9).

Since f nondecreasing we have
diam(C,,) < 6.

So we have showed

(Ve,8 > 0)(3(Cr i n € w))(AC|JCu& Y f(diam(C,)) < e & (Vn)(diam(C,,) < 5)).

That is, we showed H/(A) = 0. O

Definition 4.2.2. For a monotone function e € w* that goes to oo, we define a gauge function e* by
e*(27F) =27 for all k € w.

Define the value of e*(s) for s being not a form of 2~* by linear interpolation.

Lemma 4.2.3. Suppose that e, h € w* nondecreasing satisfy e(l) < min{n : I < h(2")} for all [ € w.
Then N¢ C Jj,.

Proof. Let A € N¢". Then, for each n € w, we can take o, € (2<¥)% such that A C |J;[0,(i)] and
S, 27¢lon@D < 271=2 Tt o € (2<¥)“ be the enumeration of {7, (i) : 7,7 € w} in ascending order of
length.

It is clear that A C [0]s. So we shall prove that |o(k)| > h(k) for all k. Assume that |o(k)| < h(k)

for some k. For every m < k,
lo(m)| < [o (k)| < h(k) < h(2"),

where ng = [log, k]. So for m < k we obtain
e(Jlo(m)]) < min{n : |o(m)| < h(2™)} < ny.

Then we have
Z g—ellom)) > Z 270 = . 270 > gno—lgTno — 1 /9
m<k m<k
On the other hand, by >°,27¢lon@D < 27m=2 for all n, we have D okew 2—ele®) < 1/2. Tt is a

contradiction. O

Lemma 4.2.4. Let e,c,h € w”. Let (I, : n € w) be the interval partition such that |I,,| = h(n). Let
geh w — w be defined by g n(k) = |logy c(n)| whenever k € I,,. Suppose that e(g.n(n)) > 2log, n
for all n € w. Then b7, < non(N¢") and cov(N¢') < e
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Proof. This proof is based on [KM22, Lemma 2.4]. We construct a Tukey morphism (¢_, ¢4 ): Cov(N®*) —
wLc(c, h). For each n € w, let 1,,: 21°82¢("] — ¢(n) be an injective map. Define ¢_ by p_(y)(n) =
tn(y | |logye(n)]). For S € S(e, h), enumerate the members of S by S = {mi,C :kel,}. For keI,
put
Lgl
75 (0)Lleg e (otherwise).

(mf ) (fm? , €ranu,)

Here (0)U°8¢(™] denotes the zero sequence of length [logc(n)|. Define ¢ (S) = [05]co-
Then clearly ¢_(y) € S — y € ¢4 (S5). Moreover, we have

HE ([o5]oe) = HE () | [os(m)))

n m>n

< He (| los(m)])

m>n

< Y He(los(m)])

m>n

< Z 9—e(ge,n(m))

m>n

< Zl/mZHO(n%oo).

m>n
S0 [05]ee € N¢ by Lemma E271. O
Lemma 4.2.5. Let e,g € w*. Suppose that e(g(i)) > 2i for all but finitely many i. Then J, C N¢ .

Proof. Let A € J,. Then we can take o € (2<“)“ such that hto = g and A C [0]s. Let £ > 0. Now
we have

(Vi) (e(lo(@)]) = elg(i)) = 24).

So
(VOO'L)( 2—6(|o’(i)|) S 2—2i S 2—i€).

Modifying the first finitely many terms in o, we have
(W)(Q—e(lo(i)\) < 27%).

So
22—6(\0(1')\) <e.
Thus, H¢_(A) < e. Since € > 0 is arbitrary, we have A € N by Lemma 471, O

Corollary 4.2.6. (1) For every gauge function f, there is an increasing function g € w* such that
I, C NY.

(2) For every increasing function g € w®, there is a gauge function f such that N'/ C Z,. O

Theorem 4.2.7. 7,4 C HDZ.
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Proof. To show Ziq C HDZ, let A € Z;q. Then we can take f > id and o € (2<¥)“ such that A C [0]
and hto = f. Let s, > 0. By f > id,

) (700 # > RO,

S

Take ig € w such that (Vi > i0)(f(i) > %) Now define 7 € (2<%)“ as

(0)[i+loga (/) /51 (j < 4,

o(i) (i > o).

If & € 2 satisfies (3°°4)(o () C «) then (3i)(7(¢) C x). Thus A C [o]e C U;[7(4)].

Also, by |7(i)] > (i + logy(1/€))/s, 2717@Is < £/27. Thus we have >, 2717(Is < ¢ Therefore
A € HDZ.

For HDZ \ Ziq # @, take A = {z € 2% : (Vn € w)(x | I, is constant)}, where I,, = [n?, (n + 1)?).
To show A € HDZ \ Zjq, first define a tree T' as follows:

To ={0}
Ty = {t"0) :t €T, b€ 2},
T=JT. |

Here T, | denotes the downward closure of T,,. Clearly, the set of paths through T is A.

Note that
A= U o)

n €T,

Let s > 0. Then we have

HE(A) < HZ ( U [0]>

ocT,
2
S on ., 9—n’s
— 0 (as n — 00).
So we get H*(A) =0 by Lemma &271. Since s > 0 is arbitrary, we have dimp(A4) = 0. So A € HDZ.
To show A & Tiq, assume that A € Ziq. Then we can take o € (2<¥)“ such that hto > id and
A C [0]eo- We may assume that ranoc C T. Take the natural bijection ¢: 2<% — T. Considering

7(n) = ¢ Y(o(n)), we get 2* C [7]o. Moreover, since ¢ maps a node whose length is n into a node

whose length is n2,
htT = Vhto > id.

This implies 2¥ € Zq, contradiction. Thus we get A & Zq4. O
4.3 Additivity number and cofinality of HDZ
Cof(N). In particular cof (N¥) = cof(N) and add(N*) = add(N).
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Lemma 4.3.2. Let (I, : n € w) be a sequence of ideals over a set X. Let I,,11 C I, for every n and
I =\, In. Suppose that add(I,) = & for every n. Then add(I) > k.

Proof. Let A < k. Take (X, : a < \) with each X, € I. Then by the assumption |J, ., Xa € I, for
all n. Thus we have (J, .\ Xo € I. O

Corollary 4.3.3. add(N) < add(HDZ).

Theorem 4.3.4. Let (I, : n € w) be a decreasing sequence of o-ideals over a set X and I =, In.
Suppose that for each m, there is a Tukey morphism (¢u,,%m): Cof(I,,) — Le(w, 2i4). Then there is
a Tukey morphism (¢, ): Cof(I) — Lec(w, 2'9).

Proof. Fix a bijection w<¥ — w and let (ag,...,a,) denote the image of the n-tuple under this

bijection. For n € w, let pr,,: w — w denote the n-th projection. Put
PR, : S(w,2) = S(w,2'9); 8 — (pr, “(S(n)) : n € w).
For A € I, define p(A) € w* by

p(A)(m) = (po(A)(m), ..., om(A)(m)).

For S € S(w,2!4), define ¥(S) C X by

(9= U [ Ya(PRa(S)).

mewn>m

Since ¢, (PR,(9)) € I, we have 1(S) € I. Fix A€ I and S € S(w,2'9) such that p(A) €* S. Then

(V) ((po(A) (@), - ., pi(A)(D)) € S(i))-

So
(Vi) (Vn < i) (en(A4) (i) € PR, (S)(1)).

Thus
(Vn) (Vi = n)(en(A) (i) € PR, (S)(1)).

Since (pn,¥y,) is Tukey, we have
(V*°n)(A C ¢n (PR, (S)))-

Thus, by the definition of v, we have
A CP(S).

Corollary 4.3.5. cof(HDZ) < cof(N).

4.4 Separating uniformity of N and N*

Theorem 4.4.1. (1) For every forcing poset P with Laver property and s € (0,1), P IF 2NV & N/*.

(2) For every s € (0,1), it is consistent with ZFC that non(N*) < non(N).
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(3) For every 0 < s < d with d € w, it is consistent with ZFC that non(Ng,) < non(N).

Lemma 4.4.2. Let 0 < s < 1 and ¢ € (2<%)*. Assume that 3 27/°("I* <1 and o is in ascending
order of length. Then |o(n)| > (logyn)/s — Cs, where Cs > 0 is a constant depending only s.

Proof. By the assumption, there are at most 2¥* elements of length & in o. So for all n € w, |o(n)| >
a(n), where
a=(0,1,...,1, 2,...,2, 3,...,3,...).
——
[2°] terms [22%] terms [23¢] terms

Thus
k= a(l+[277 4. 4 20709,

So
n>14[2°] 4+ 26D = a(n) > k.

Now for some kg we have for all k > kg
T+T2°7T 4+ [2(’6—1)5] <1425 ... 420k"Ds L p

<1425+ 420D 4 ohs
_ (2(k+l)s . 1)/(25 o 1)

So for k > ko,
n> (25D _1)/(2° = 1) = a(n) > k.
That is
logo((2° = 1)n+1)/s —1> k= a(n) > k.
So

a(n) >logy((2° —1)n+1)/s —2,

provided that logy((25 — 1)n+1)/s — 1 > ko.

Thus for all but finitely many n we have

a(n) >logy((2°—1)n+1)/s—2
> logy((2° — 1yn) /s — 2
=logyn/s +log,(2° —1)/s — 2.

So putting Cs = 2 —log,(2° — 1) /s gives
a(n) >logyn/s — Cs.

By adjusting Cs, we can make the above inequality hold for all n. O

Lemma 4.4.3. Let A C 2% and s > 0. If #°(A) = 0, then there is o € (2<¢¥)“ such that

D 27l <1 & A C o).
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Proof. By H5,(A) = 0, for each n € w, we can take (C? : m € w) such that 3, diam(Cn)® < 2=(n+1)
and A C |J,,c., Cr- Expand each C7), to a basic open set [07),] so that its diameter does not change. Let
o € (2<*) be an enumeration of (07, : n,m € w). Then we have Y, 27170l <1 and A C [0]e. O

Lemma 4.4.4. For 0 < s < 1, there is a Borel relational system Cov’(N*®) that is equivalent to
Cov(N*).

Proof. Define H and < as follows

H={o € (2%%): (Vym e w)(}_ 2770 <1/(m+1))},

n

rxdo = (Ym)(x € U [o(n,m)]).

new
Then Cov'(N*®) = (2¥, H, <) suffices. O

Proof of Theorem [f.4.1. To show item (1), fix & and p € P such that p IF & € (2<¥)¥ and p I-
S, 27816l < 1/2. Fix ¢ < p. Put B(n) = |(logyn)/s — Cs| where Cj is the constant from Lemma
4477, Define 7 so that p I- 7(n) = d(n) | B(n).

By the Laver property, we can take r < g and S € ], [° ”)2}<"(1 “ Such that r I (V*°n)(7(n) €
S(n)). Let X be the Borel code of (¢, U,>r U{[t] : t € S(n)}. Then we have r IF [7]o C X.

Now we have the following;: -

/H(1+s /2( < H(H»s /2 U U{ ‘te S )
n>k
< 3 pl1=9/2 (2B a+9)/2
n>k
< 2(Cat1)(14s)/2 Z n(1=8)/2,—(1+s)/(2s)
n>k

= 2CHDA+/2 3 = (/D419 4 (a5 ks = o0).
n>k

We used (1/2)(s 4+ 1/s) > 1 in the last equation. Thus H*+*)/2(X) = 0. Since (1 + 5)/2 < 1 and
dimg(2¥) = 1, we have X # 2¢.

Then we can take # € 2 ~ X in V. Then by absoluteness, we also have r |- z € 2¢ . X. By
rIF [6]oe € [floe € X, we have r I 2 & [6]s. Therefore we have I+ (Vo € 2<)@) (3, 27lemIs <1 =
2NV ¢ [6]eo). So by Lemma 4473, we obtain |- H*(2¥ N V) > 0.

For item (2), consider wo-step countable support iteration of Mathias forcing over a model of CH.
In this model, by the item (1) and Lemma 4474, non(N*) = 8y whereas non(N) = N.

For item (3), use item (2) and Proposition 471774, In detail, let 0 < s < d and put s = s(14¢)/d < 1
for some ¢ > 0. By Proposition 4713, Proposition &4 and Proposition 218, there is a (1 + €)/d-co-
Holder map f: 2¢ — [0,1]%. Take A C 2% such that |A| = non(N*) and ' (A) > 0. Then H*(f(A)) >
C -1 (A) > 0 for some constant C' > 0 by Proposition &-1-2. Now we have |f(A4)] < |A] = non(N*),
0 non(/\/'[f),l]d) < non(N*'). Thus in the model of (2), we have non( na) <mnon(N). O

Remark 4.4.5. The consistency of Theorem 4471 (2) was already proved in [SS05]. But the forcing

posets are simpler in our work than in their work.
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4.5 Many different uniformity numbers of Hausdorff measure
0 ideals
In this section, we prove the following theorem.

Theorem 4.5.1. It is consistent with ZFC that there are ¥; many cardinals of the form non(N7)

below the continuum.

We modify the proof that there are consistently many different uniformity numbers of Yorioka
ideals from [KIV22].

Definition 4.5.2. (1) For ¢,h € w*, define g, € w* by
gen(k) = [logy c(n)| (whenever k € J,,)

where (Jp,)ne. is the interval partition with |J,| = h(n) for all n € w.

(2) For b,g € w¥, define f, , € W by

fog(k) = Zﬂogz b(1)] (whenever k € I,)

I<n
where (Ip,)ney 18 the interval partition with |I,,| = g(n) for all n € w.

(3) For f € w* increasing, define ey € w* by
er(k) =min{n e w: k < f(2")}.
(4) For c,h € w* define c"" € w* by

c'(n) = [[e(n)] =],

Definition 4.5.3 ([KM22, Definition 4.1]). Two functions (n} )kew, (1] )kew of natural numbers > 2

are called bounding sequences if

(i) ny -nf < Ny for all k € w, and

.o . + _
(i) limg— oo logn; n; = oo.
Given bounding sequences (1, )rew, (TIZ_)kew, a family F = {(aq,do, bas Goy fa, Cay Pa) : o € A} of
tuples of increasing functions in w* is called suitable with respect to (n; )rcw, (nﬁ)kew if it satisfies

the following properties for all o € A:

(S1) For all k € w, we have aq(k), do(k), ba(k), ga(k), 079 (k), 2250 h (k) cZhe (k) € [ng;,n}).
(S2) hg < cq and limsupy,_, oo m 1og g, () (ha(k) + 1) = co.

(S3) ba/ga > da.

(S4) ag > b9

(S5) There is some [ > 0 such that fp_ 4., <* fa o pow;.
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(86) fa < gca,ha-

(ST) For all 8 € A with 8 # a,

Vh
. . Cg B(k) aq (k) .
kliniomm{ do (k) ’dﬁ(k)} =0

Fact 4.5.4 ([KM?22, Section 4 and 5]). (1) There are bounding sequences and there is suitable fam-

ily F of continuum size with respect to them.

(2) Assume CH and let (ko : o € A) be a sequence of infinite cardinals such that |A| < N; and
KY = Kq for all o € A. Given a family F = {(aa,da, bas Gas fas Cas ha) = @ € A} satisfying (S1)

(e

and (S7) with respect to some bounding sequences, there is a forcing poset that preserves all

cardinals and forces
v

Qo ,do

< kg SO7 g

st

¥

for all @ € A. If the family F is suitable, then

Dilouhcy S non(Ifa) S Ul?ou‘}a S cZouda
is a ZFC theorem. Thus the forcing poset forces
3 v
t)couha = nOn(Ifa) = Ubaaga = caoudoz = Ra

for all o € A.

Definition 4.5.5. Given bounding sequences (1 )xecw, (ng)kew, a family F = {(aq, do, bas Gy Cas Py €y Uay)
a € A} of tuples of increasing functions in w* is called modified suitable with respect to (n, )rew, (nﬁ)kew
if it satisfies (S1), (52), (S3), (S4), (S7) and the following (MS1), (MS2) and (MS3) for all o € A:

(MS1) eq = ey, -
(MS2) eq(gey by (k) > 2logy k for all k € w.
(MS?)) fbmga S U -

Proposition 4.5.6. For a modified suitable family F = {(aa,dqa, b0, Ja; Cas Pa, €a, Ua) = @ € A}, we
have
vz, h, <mon(N) <non(Z,,) <vp . < i g

asJa —

Proof. v7 , < non(AN¢) follows from (MS2) and Lemma Z24. non(N¢) < non(J,,) follows

o] . <c’ , follows from (S3), (S4) and [KM22, Lemma 2.6]. O

o ga = Aa,da

Proposition 4.5.7. There are bounding sequences and there is a modified suitable family F of
continuum size with respect to them.

Proof. First, we build bounding sequences (nj )kew, (7} )rew and a modified suitable family F =
{(a,d,b,g,c, h,e,u)} of size 1 by recursion. Let ng = 2 and d(0) = 3. Let (I, : n € w) and (J,, : n € w)
be interval partitions with |I,| = g(n) and |.J,| = h(n). Define the component of F in the following

order:

(1) h(k) = d(k) D40,
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(2) g(k) = max{(max Jy)? — min I + 1, (k) + 1},
(3) b(k) = 2000 +dh),

(4) u(j) = X2 1<4 108, b(1) + j — min I}, for j € I,
(5) k) = 2u(ltmax 2%

(6) a(k) = max{c""(k),b%9(k)} +1,

(7) nii = a(k),

(8) nypsy =ny -nf +1and

(9) dk+1) =n;_, +1.

Item (1), (3), and (6) ensures (S2), (S3), and (S4) respectively.
Item (4) ensures (MS3) since

u(j) =Y logy b(l) + j — min I
1<k

> Z log, b(1)

1<k
= fb,g (])

for j € I. Moreover, this definition ensures u is strictly increasing since

u(max Ix_1) = Z log, b(1) + max I,—1 — min I},
1<k—1

= Y logyb(l) + g(k—1)—1

1<k-1

When we are done defining (n}, )iew, (nz')k@,, a,d,b,g,c,h and u, we define e by
€= ey.

This ensures (MS1).
Item (5) ensures (MS2) since

ge,n (k) = u((max Jk)z) —-1> u(kz) -1
for k € J,, and

€u(ge,n(k)) = min{n : gen(k) <u(2")}
> min{n : u(k?) — 1 < u(2™)}
= [log, kzl
> 2log, k.
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Item (2) ensures that in Item (5) we will not access v with an invalid index. In fact, from Item (2)
we obtain
g(k) > (max Ji)* — min I, + 1.

So we have
(max J;)? < min Iy + g(k) — 1 = max I.

Thus when we are in (5), we already defined u((max Jy)?).

The above construction ensures
n,, < d(k) < h(k) < g(k) < b(k) < b (k) < a(k) =n],

ny < d(k) < b(k)/g(k) < b(k) < nif

and
ny < d(k) < h(k) < c(k) < c""(k) < a(k) = n}

So (S1) holds.
Now we shall show how to construct a modified suitable family F = {(aa, da, ba, Ja; Car Pas €a, Ua)
a € 2¢} of size continuum. We construct approximations {(ay,dy, by, g, ¢t, he,ug) : t € 2<%) and then
put for a € 2, aq = U, ¢,
Let 0 = (0,0,0,...),1=(1,1,1,...). Let < denote the lexicographical order of 2% and 2" for n € w.

) ) )

Qaln, €tC.

By recursion on n € w we define ((a¢,dy, by, g¢, ¢t, he, ug) = t € 2™).
(1) Let d(‘]r(n+1)(’n) > dm(n)(n - 1) -air(n)(n - 1) + 2.
(2) When dy(n) is defined, put d;+(n) = (n + 1)a;(n), where ¢ is the successor of ¢ in <.
(3) Define hy+(n), gi+(n), ..., a;+(n) as in the construction of the modified suitable family of size 1.

Put n;, = dg(k) — 1 and nj = ag(k). And put e, = e, for a € 2¢.
We finished the construction and have to check (S7). It suffices that we prove for a < 8, limy_ o0 Z;Eg =

0. Let n be the minimum number such that a(n) < f(n). Then by the definition of dg, we have

dg(k) > (k+ 1)an(k) for any k > n. Thus Z;EZ; — 0 (as k — 0). O

By Fact 4574 (2), Propositon 576 and A577, we have Theorem #4571,

4.6 Many different covering numbers of Hausdorff measure 0

ideals

The following fact was proved by Kamo and Osuga in [OK14, Section 3].

Fact 4.6.1. Let ¢ be an ordinal and (A, : a < J) be a strictly increasing sequence of regular uncount-
able cardinals. Let k > d be a cardinal such that k = k<*e for all a < . Let (by,co : @ < &) be a
sequence of pairs of reals in w* such that b, >* ¢ff -id for all § < v < § and by >* 29 for all o < 4,
where H = (n”2 :m € w). Then there is a ccc forcing poset P such that

Pl-((Va<0)(cs, g S Aa <) &e=kK).

]

41



Theorem 4.6.2. It is consistent with ZFC that there are X; many cardinals of the form cov(N7)

below the continuum.

Proof. Assume GCH. Put § = w;. Put A\, = Ngy1 for @ < wi. Put K = N, 41. We define

(bavs Gous ey Ca + v < w1 ) recursively so that
(1) by >* 2! for all a < wy,
(2) bg >* cg-id for all < a < wy,
(3) galn) = >2ic, 108 ba(i),
(4) eq(n) =min{m € w:n < g,(2™)} and
(5) cq satisfies eq(ge,,, m(n)) > 2logy(n) for all n € w and o < wy.

Then, the assumption of Fact 261 holds. So we can take a ccc forcing poset P such that
Pl (Vo <wi)(co, g < Aa S 65 1)

But by item (3) above and [OK14, Lemma 1], we have cl?ml < cov(Jy, ). And item (4) and Lemma
1773 gives cov(J,, ) < cov(N®). Ttem (5) and Lemma &2 gives cov(N¢a) < 3 u

Therefore we have
PIF (Va < wl)(cbaml = cov(T,,) = cov(N®) = c?mH = Aa)-

Especially we have
P I (Va < w)(cov(Ne) = Ay).

4.7 Goldstern’s principle of Hausdorff measures

We consider the generalization of Goldstern’s principle, which was considered in the previous chapter,
to Hausdorff measures.

Let Z be an ideal on some Polish space X. We say Goldstern’s principle for a pointclass I" with
respect to Z holds if for every A C w® x X satisfying the monotonicity condition, the condition A € '
Ay eT.

For a gauge function f, let I, be the ideal of all set of reals of o-finite f-Hausdorff measure. Recall

and the condition A, € Z for every z € w*, we have |, .
that Pz stands for the idealized forcing for an ideal Z.

A gauge function f is called a doubling gauge function if there is r > 0 such that for every x > 0
we have f(2z) < rf(x).

Theorem 4.7.1. Let f be a continuous doubling gauge function and X be a compact metric space.
Then Goldstern’s principle for 2% sets with respect to N )’; holds.

Proof. Let A C w® x X be a E% set satisfying the monotonicity condition and assume A, is of f-
Hausdorff measure 0 for each x € w®. Assume also that (J,. . Az is not of f-Hausdorff measure
0.

We divide the argument into two cases.
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Ay

A, and B is of non-o-finite f-Hausdorff measure.

Firstly, we consider the case when | J, .. A is of non-o-finite f-Hausdorff measure. Since | J
is 31, we can take a Borel set B such that B C Usewe
The existence of such a Borel set B is ensured by the assumption f is continuous and X is compact
and the theorem by M. Sion and D. Sjerve [SS62, Theorem 6.6].

Let G be a (V, Py, )-generic filter such that B € G. And let g be the corresponding generic real
to G. By genericity, we have g ¢ A, for each € w* N V. Thus we have g & |J, oy Az. Since the
monotonicity condition holds, which is absolute between V' and V[G], and since P;_, is w“-bounding,
which is the Theorem by J. Zapletal [ZapUg, Corollary 4.4.2], we have g & |J, . Az It contradicts
the fact g € B C U, ¢y Az

Secondly, we consider the case when | J

reEwY

sews Ag is of o-finite f-Hausdorff measure. Let (B, : n € w)
A, C U, B and each B, is of finite positive f-Hausdorff
vewe (Az N By). Since B, is of finite positive f-Hausdorff
measure, the restriction of f-Hausdorff measure into the Borel subsets in B,, is measure isomorphic to

be a sequence of Borel sets such that | J, ..

measure. For each n, consider the set |J

the Lebesgue measure by using measure isomorphism theorem. Therefore, using GP(E%), we conclude
Usews (Ae N By) is of f-Hausdorff measure zero. So taking the union over n € w, we deduce that

Uscwe Az is of f-Hausdorff measure zero. O

4.8 Laver forcing preserves Hausdorff outer measures

In order to prove the consistency of Goldstern’s principle of Hausdorff measures for the pointclass all,
we show that the Laver forcing preserves Hausdorff measures. However, this alone does not achieve
the objective. To achieve it, we must show that countable support iterations of the Laver forcing also
preserve Hausdorff measures. Unfortunately, we could not prove this.

Recall that I denotes the Laver forcing.

Definition 4.8.1. An outer measure ;1* on a space X satisfies the increasing sets lemma if p*(1J,, An) <

sup p*(A,,) for every increasing sequence (A, : n € w) of subsets of X.

Theorem 4.8.2 ([Dav70]). If X is a compact metric space, f is a continuous gauge function and

4 > 0, then ”Hf; satisfies the increasing sets lemma.

Definition 4.8.3. For T € L and t € T, let T; denote the set {s € T :t CsVs Ct}. For T € L
and 7 € w<¥, let T(7) denote the image of 7 under the canonical isomorphism from w<* into 7. For
TeLand 7€ ws, let T(1) = Tp(r).

For S,T € L and n € w, the relation S <,, T holds if S(7) = T'(7) for every 7 € w™.

For open sets D C L, let

D={TeclL:¥S<,T S¢D}UD, and
D*={T€L:IVr€cw< |r| >n=T(r) € D}.

Lemma 4.8.4. (1) If D C L is open and nonempty below S < T € D*, then there is s € S such
that Ts € D.

(2) If D C L is open, then for every i € w and every T € L, there is S <; T such that S € D*.
(3) If D,, C L (n € w) are open, then for every i € w and every T € L, there is S <; T such that

Sen,D;.
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Proof. See [Pawy6]. .

In this section, we prove that one step Laver forcing preserves Hausdorfl outer measures. The

following lemma is crucial.

Lemma 4.8.5. Let pu* be an outer measure on 2¢ such that the increasing sets lemma holds for p*.

Let a > 0 be a real number. Let A, C 2 (0 € w<¥) satisty the following conditions:
(1) For every o € w<¥, u*(A,) < a.
(2) For every o € w<¥, A, C liminf,, Ay~p.

Then we have p* (e Uper 4s) < a.

Proof. Recursively we define the sequence (A% : a < wy,0 € w<¥) as follows:

0 _
A0 = A,
AT = liminf A2,
new

Ay = |J Ag (for limit X).

a<A

Note that, for every o € w<¥, (A% : o < wy) is an increasing sequence and each member has outer
measure < a using induction on « and the increasing sets lemma. Therefore, there is a, < wy such that
p* (AT AB) = 0 for every 8 > a,. Put @ = sup, a,. Then we have p*(AZT U, (AST N A)) < a.

We now claim that (Ve Uyer 4o € AGT U U, (AT N AZ). To show it, let = ¢ A% U
U, (A2 AY). We build a sequence of trees (T : i € w) such that each T; has height i and for
each maximal element o of Tj, we have x ¢ A%*!. Let Ty = {@}. By z & A%™!, the base case
of induction works. Suppose that T; has been constructed. For every maximal element o of Tj,
we have ¢ AYtl. By the definition of A2T! the set X, := {n : x ¢ A%} is infinite. Let
Ti11 =T; U{o"n: o maximal element of T;,n € X, }. If 07 n is a maximal element of T;,1, then by
g ASTL A we have z & AST! . Therefore the induction hypothesis continues to hold. Finally

we put 7' = {J,,, T;. Then we have x & |, A3 In particular, we have = & |J, o Ao O

1EW
Definition 4.8.6. Let P be a forcing notion. Let U be a P-name such that P I- U is a finite subset of 2<¢.

We define
dec(U) = {p € L : p decides U}.

Also for p € dec(U), let U(p) be the decided value of U by p. For p & dec(U), let U(p) = . Let

Wl(0) =supd S fldiam([s))) : p € dec(U)

seU(p)

provided that P IF (Vs € U)(diam([s]) < §). Otherwise let ug(U) = o0.
Lemma 4.8.7. If R < T, R € dec(U) and T € dec(U)*, then there is s € R such that U(T) = U(R).

Proof. Since dec(U) is nonempty below R, by Lemma 4874 (1), we have T, € dec(U) for some s € R.
T, is in dec(U), so U(R) = U(R,) = U(Ts). O
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Lemma 4.8.8. Let U, (n € w) be L-names for finite subsets of 2<«. If T € (" __ dec(U,)*, then

new

Hi({ze2:ThaelJ s <D ul@).

n SGUn new

Proof. We may assume that LL I (Vs € U)(diam([s]) < §). We have the following equivalence:

TkzelJ sl

n sel,
— (VS <T)(3R < S)(3n)(3s € Un(R))zx € [s]
— (VS <T)(3t e S)(3Fn)(3s € Upn(T)))x € 5]

S<TteS n seUn(Tt)

Here, we used Lemma 4877 for the second equivalence.
On the other hand, we have H(J;(Un User,.myls) < 22, ,ug(Un) for every t € T. Therefore we

obtain the conclusion by Lemma 4-X5. O

Definition 4.8.9. Let P be a forcing notion. Let f be a gauge function, 6 > 0 and £ > 0. Let

Ig;sf = {(U, :n € w):PIF “U, is a finite subset of 2<% such that diam([s]) < & for every s € U,
and Z f(diam([s])) <e-27""}

sEUn
If P =1, we omit the superscript L. to write it as Iig.

Theorem 4.8.10. Let f be a gauge function, 6 > 0 and A C 2¥. Let a = ’HZ;(A). Then L IF H(’;(A) >
a/2.

Proof. Suppose L Iff ’H(J;(A) > a/2. Then we can take a positive, rational number ¢ < a/2 and T € L
and (U, :n € w) € Ief’(; such that T'IF A C U, U,cp, [s]- By Lemma 484 (3), we may assume that
T €, dec(Uy,)*. Since AC {zx €2¥:TlFzel, User, [5]}, we have ”HZ;(A) < 2¢ < a by Lemma

48X, which is a contradiction. O

4.9 Amoeba forcing of Hausdorff measures

In this section, we give a Hausdorff measures version of the amoeba forcing. We expect to be able
to separate add(N') and the additivity of some Hausdorff measure using this forcing notion. But we
could not show this.

Let (X, d) be a second countable metric space and f be a continuous gauge function. Fix an open
base (N, : n € w) of X.

Definition 4.9.1. For each i € [1,w), we define a forcing poset P(i) whose conditions are all p C w
such that Y _  f(diam(N,,)) < 1/2¢. The order of P(i) is defined to be ¢ < p iff ¢ D p.

nep

Lemma 4.9.2. For every A C X with H/(A) = 0, the set of conditions {p € P(i) : A C |

dense.

N, }is

nep
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Lemma 4.9.3. Define a P(i)-name A(i) so that P(i) I A(i) = Upec Unep Nn holds. Then P(i)
forces HI (A(i)) < 1/2'.

Lemma 4.9.4. P(i) is o-linked for each i € [1,w).

Proof. For a € [w]<*, we define a set P, (i) so that

P,(i) = {p €P():aCp, % Zf(diam(]\fn)) + Z f(diam(N,,)) < 2i1+1 } .

nea nep\a

We claim that each P, is linked. Let p,q € P,. Consider r = pUq. We have

LY fim(V) + Y Fldiam(N) <

nea nep\a
1 ) ) 1
§Zf(dlam(]\7n))+ > f(diam(Ny)) < o7
nea neg~a

Adding the sides gives the following inequality:

> @)+ 3 f(din(,) < <o

nea ne(pUg)~

which shows that pU g € P(3).
Finally, we show P(i) = [J{P.(i) : @ € [w]<“}. Letp € P(i). Then S := 3", f(diam(N,)) < 1/2".

we can take a € [w]<* such that 37  _, f(diam(N,)) < /28— S. Put T = Y nepa f(diam(N,)),
which implies S + T < 1/2%. Then we have
fodlam Z f(diam(N,,)) = 1(S’—T)—i—T—l(S—l-T)<L
2 2 201
nea nepsa
Therefore we showed p € P,(i). O

Definition 4.9.5. Let P be the finite support product of P(i) for i € [1,w).

Theorem 4.9.6. P is ccc and P adds a set of reals of f-Hausdorff measure 0 that contains all subsets
of X of f-Hausdorff measure 0 coded in V.

Proof. Tt follows from Lemmas 492 493 and 4°94. O

4.10 Open problems
Problem 4.10.1. (1) Is it consistent that non(Ziq) < non(HDZ)?
(2) Is it consistent that cov(HDZ) < cov(Ziq)?
Problem 4.10.2. (1) Is it consistent that add(N) < add(HDZ)?
(2) Is it consistent that cof(HDZ) < cof (N)?
Problem 4.10.3. Do countable support iterations of Laver forcing preserve sets of Hausdorff measure

positive?
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Problem 4.10.4. s it consistent that add(\) # add(N/) for some gauge function f? In particular

is this consistency achieved by the forcing notion in Section 49?7
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Chapter 5

Keisler’s theorem

The following is an important theorem in model theory proved by Keisler and Shelah. Keisler [Keit4]
proved it by assuming GCH, but Shelah [She71] removed that assumption.

Theorem 5.0.1 (Keisler-Shelah). For every (first-order) language £ and two L-structures A, B, the

following are equivalent:
(1) A= B (that is, A and B are elementarily equivalent).

2) There is a nonprincipal ultrafilter I over an infinite set such that the ultrapowers AY and BY
p p p

are isomorphic.
The following theorem is also known in connection with the above theorem.
Theorem 5.0.2 (Keisler, Golshani and Shelah). The following are equivalent:
(1) The continuum hypothesis.

(2) For every countable language £ and two L-structures A, B of size < ¢, if A = B then there is a

nonprincipal ultrafilter & over w such that the ultrapowers AY and BY are isomorphic.

For this theorem, Keisler [Keitd] showed (1) = (2) and Golshani and Shelah [GS23] (2) = (1).

In order to analyze these theorems in detail, we introduce the following principle.
Definition 5.0.3. Let x, u and A be infinite cardinals. We define a criterion KT#(\) by
KTH(\) <= for every language L of size < p and

all elementarily equivalent L-structures A, B of size < A,

there is a uniform ultrafilter ¢ on & such that AY ~ BY.
We also define a criterion SATY (X) by

SAT#(X) <= there is a uniform ultrafilter U on « such that
for every language L of size < u and

every sequence (A; : i < k) of infinite L-structures of size < A,

the ultraproduct (H Ai> /U is saturated.

1ER
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Keisler-Shelah’s theorem means that KTgi (M) holds for any infinite cardinal .
Keisler’s paper also gives an example showing the following.

Fact 5.0.4 (Keisler [Kei64]). Let x be an infinite cardinal. Then ﬂKTﬁJr(n“‘) holds.
We introduce abbreviations for countable languages and ultrafilters on w.
Definition 5.0.5. Let s be a cardinal.
(1) We say KT(x) holds if KT}° (k) holds.
(2) We say SAT (k) holds if SAT}° (k) holds.

In this chapter, we prove the implications indicated by thick lines in Figure b1l

CH MA

SAT(c) SAT(R,) SAT(R)
cov(M) = l
A cf(c) = Ncl J cov(M) =¢
. |
KT(c) KT(Xy) KT(N,)
b=1N; cov(N) <0

Figure 5.1: Implications; thick arrows indicate our results

We use the following fact later.

Fact 5.0.6 ([RS06, Lemma 3.5 and Theorem 3.12]). Let (A; : i € w) be a sequence of structures in
a language £ such that each A; has size < ¢. Let U be an ultrafilter over w. Then the ultraproduct
[1;c., Ai/U has size either finite or c.

5.1 SAT(Nl) and KT(Nl)
In this section, we prove that SAT(N;) is equivalent to CH and that KT(R;) implies b = N;.
Theorem 5.1.1. SAT(X;) implies CH.

Proof. Assume SAT(RX;) and ~CH. Take an ultrafilter U over w that witnesses SAT(X;). Let A, =

(w1, <)Y/U. For o < wy, put a = [{a, , 0, ... )]. Define a set p of formulas with a free variable x by

p={"a.<z7:a<w}.
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This p is finitely satisfiable and the number of parameters occurring in p is X; < ¢ = |A4,| by ~CH.
Thus, by SAT(X;), we can take f: w — w; such that [f] realizes p. Put 8 = sup,,c,, f(n). Now we
have {n € w: 8 < f(n)} € U and this contradicts the definition of . O

Theorem 5.1.2. -SAT(R;) holds.

Proof. Take an ultrafilter U over w that witnesses SAT(XN3). Let A, = (w2, <)*/U. For a < wy, put
ay = [{a,a,a,...)]. Define a set p of formulas with a free variable x by

p={"Ta. <z <(w1)s':a<wi}.

The remaining argument is the same as Theorem H-171. O
Definition 5.1.3. Let mcf = min{cf(w*/U) : U an ultrafilter over w}.

The order of w®/U is the almost domination order modulo U and cf(w®/U) is the dominating

number of this relation. So it is clear that b < mcf < 0.

Lemma 5.1.4 ([GS22, Claim 2.2]). Let A be a structure in a language £ = {<}. Suppose that a € A
has cofinality w;. Let U be an ultrafilter over w. Then a. = [{a,a,a,...)] has cofinality wy in A% /U.

Proof. Take an increasing cofinal sequence (4 : @ < wy) of points in A below a. Then (z} : o < wy)
is an increasing cofinal sequence in A, where ¥ = [(24,Zq; Zq,-..)] for each a < wy. This can be
shown by regularity of w;. O

Lemma 5.1.5 ([GS?2, Claim 2.4]). Let U be an ultrafilter over w and B, = (Q,<)¥/U. Then for

every a,b € B,, there is an automorphism on 5, that sends a to b.

Proof. Consider the map F': Q* — Q defined by F(z,y,2) = 2 — y + z. Then we have
(Vy, z € Q)(the map z — F(x,y, z) is an automorphism on (Q, <) that sends y to z).

This statement can be written by a first-order formula in the language £’ = {<, F'}. Thus the same
statement is true in (Q, <, F)* /U. The map F, : B3 — B, induced by F satisfies that

(Vy, z € B,)(the map = — F(z,vy, ) is an automorphism on (B,, <) that sends y to z). O

Theorem 5.1.6. KT(X;) implies mef = N;.

Proof. This proof is based on [(G527, Theorem 2.1]. Assume that mcf > Ry. We shall show = KT (Xy).

Let £ ={<}, A=(Q,<) and B= (Q+ ((w1 +1) x Q>0), <p). Here <p is defined by a lexico-
graphical order and a disjoint union order. A and B are dense linear ordered sets, so by completeness
of DLO, we have A = B. Take an ultrafilter U over w. Put A, = A¥/U, B, = B* /U.

There is a point a in B such that cf(B,) = RNy, where B, = {z € B : 2 < a}. Then a, € B, has
cofinality 8y by Lemma 571°4. Here a, = [(a,a,a,...)]. On the other hand, we shall show every point
in A, has cofinality > mcf. If we do this, since we assumed mcf > R, we will have A, # B,.

By Lemma 515, it suffices to consider the point 0, = [(0,0,0,...)]. Since Q is symmetrical, we
consider cf((Qs0)¥/U, >y).
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Now we construct a Tukey morphism (p,1): Cof (w* /U) — Cof ((Qs0)“ /U, >y) by
@ w /U = (Qs0)” /U [f] = [(1/(f(n) +1) : n € w)],
¥ (Qs0)*/U = /U [g] = [([1/9(n) = 1] : n € w)].

So we have cf((Qs0)“ /U, >y) > cf(w¥ /U, <y).
Thus we have cf((Qs0)¥ /U, >y) > mcf. We are done. O

Corollary 5.1.7. KT(X;) implies b = N;.

Proof. This follows from Theorem b-16 and the fact that b < mcf. O

5.2 SAT(N()) and KT(N())

In this section, we first briefly mention consistency of KT (Xg)+—-KT(X;). And we prove that SAT(Rg)

is equivalent to cov(M) = ¢ A 2<¢ =.

Fact 5.2.1 ([RIall, Theorem 7.13]). The statement cov(M) = ¢ is equivalent to MA (countable), that
is for every countable poset P and a family of dense sets D with |D| < ¢ there is a filter G of P that
intersects all D € D.

Theorem 5.2.2. cov(M) = ¢ implies KT(Ry).

Proof. [GS22, Theorem 3.3] shows that cov(M) = ¢ A cf(¢) = X; implies KT(R) and the exact same
proof works for KT (Xy) without the assumption cf(c) = N;.

Here we sketch the proof.

Let £ be a countable language and A° and A' are countable £-structures which are elementarily
equivalent.

Enumerate (A% for i = 0,1 as
(A ={fsa <)
By a back-and-forth method, we construct a sequence of triples {(Us, g%, gk) : @ < ¢) satisfying:
(1) go € A°,
(2) go € A,
(3) U, is a filter over w generated by Ng + || sets,

(4) (Uy : o < ¢) is an increasing continuous sequence,

(5) If p(xo,...,Tn_1 is an L-formula and By, ..., 3, < «, then the set

{kew: MOl (g, (k),....aB,_, (B) <= M | (g, (k).....gb,_, (K))
belongs to Uy 1.

In the construction, when « is even, we put g0 = f,(y) where 7 is the least ordinal f,? & {gg (B < al.

And P is the poset of finite partial functions from w to A'. Take a generating set F of U, of size
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Ro+|a|. Then by using MA (countable), take a P-generic filter G with respect to a the following family
of dense sets of P:
D, ={peP:nedomp} (for n € w)

and
Ex (ponel), (v, nery ={p € P2 (Fk € dom(p) N X)(Ve € 1
(M E @u(g: (k). .- g5 (K), ga(k)) &
Ml ': @L(g}y{ (k)a e g%,;“ (k)ap(k))})7
where X € F, (@, : ¢ € I) is a finite sequence of £-formulas and 7{,...,~;, for ¢ € I are ordinals less

than a. Then putting gl = |J G satisfies the induction hypothesis.

Then the appropriate construction guarantees that U = |J,_ .U, is an ultrafilter and that the

a<c
function

((l98)ut: [9aJua) = 0 <)
is an isomorphism from (M°)* /U to (M) /U. O

Corollary 5.2.3. Assume Con(ZFC). Then Con(ZFC + KT (Xg) + ~KT(Xy)).

Proof. MA + —~CH implies KT(Rg) A = KT(X;) by Theorem 516 and 522. O
Fact 5.2.4 ([BJY5, Lemma 2.4.2]). cov(M) = U?w:new%id. In other words, cov(M) > k holds iff

(VX Cw® of size < k)(3S € [, [w]=)(Vz € X)(3%°n)(z(n) € S(n)) holds.

1€w
Theorem 5.2.5. SAT(R() implies cov(M) = .

Proof. Take an ultrafilter U that witnesses SAT(Rg). Fix X C w* of size < ¢. Define a language £
by £ = {C} and for each i € w, define a L-structure A; by A; = ([w]<% C). For each z € w*, let
Sy = ({z(i)} : i € w). In the ultraproduct A, = []
variable S by

icw Ai/U, define a set p of formulas of one free

p={"[Sz] CST:ze X}.

This p is finitely satisfiable. In order to check this, let xg,...,z, be finitely many members of X.
Define S by S(m) = {zo(m),...,x,(m)} for m > n. We don’t need to care about S(m) for m < n.
Then this S satisfies [S;,] C [S] for all i < n. Moreover, the number of parameters of p is < c.

So by SAT(Rg), we can take [S] € A, that realizes p. Then S fulfills (Vz € X){n € w: z(n) €
S(n)} €U). Thus (Vz € X)(3*°n)(z(n) € S(n)). O

Theorem 5.2.6. SAT(X() implies 2<¢ = c.

Proof. Take an ultrafilter ¢ over w that witnesses SAT(Ry). Fix k < c.

Put £ = {C} and define an L-structure A by A = (jw]<¥, Q). Put A* = A¥/U.

Define a map ¢: w*/U — A* by ([z]) = [{z(n)} : n € w)]. By Fact 6106, we have |w*/U| = ¢.
Take a subset F' of w® /U of size k.

For each X C F, let px be a set of formulas with a free variable z defined by

px={"uy) Cz:ye X}U{"u(y) L2z :ye F\ X}
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Each px is finitely satisfiable. In order to check this, take [z¢],...,[z,] € X and [yo],...,[ym] €
FNX. Put 2(i) = {xo(4),...,2,(¢)}. Then ¢([z0]),...,([zn]) Cu [2]. In order to prove «([y;]) Lv [2]
for each j < m, suppose that {i € w : y;(i) € 2(i)} € U. Then for each ¢ € w, there is a k; < n such
that {i € w : y;(i) = xx, ()} € U. Then there is a k < n such that {i € w : y;(i) = zx(¢)} € U. This

implies [y;] = [xx], which is a contradiction.
By SAT(Rg), for each X C F, take [zx] € A* that realizes px. For X, Y C F with X #Y, we
have [zx] # [zy]. So 2% = |{[zx] : X C F}| < |A*| = c¢. Therefore we have proved 2<¢ = ¢. O

Theorem 5.2.7. cov(M) = ¢ A 2<° = ¢ implies SAT(Ry).

Proof. This proof is based on [ER72, Theorem 1].

Let (b : @ < ¢) be an enumeration of w*. Let ((L¢, Be, Ag) : £ < ¢) be an enumeration of triples
(L,B,A) such that £ is a countable language, B = (A; : i € w) is a sequence of L-structures with
universe w and A is a subset of Fml(£") with |A] < ¢. Here LT = LU {c, : @ < ¢} where the ¢,’s are
new constant symbols and Fml(£") is the set of all £L* formulas with one free variable. Here we used
the assumption 2<¢ = ¢. And ensure each (£, B, A) occurs cofinally in this sequence.

For Be = (Af 11 € w), put Be(i) = (Af, bo(i),b1(i),...), which is a LT-structure.

Let (X¢ : € < ¢) be an enumeration of P(w).

We construct a sequence (F¢ : £ < ¢) of filters inductively so that the following properties hold:

(1) Fp is the filter consisting of all cofinite subsets of w.

(2) Fe C Feyq and Fe =, Fo for € limit.

a<é
(3) X¢ € Feyq or w~ X¢ € Feya.
(4) F¢ is generated by < ¢ members.

(5) If
for all T' C A¢ finite, {i¢ € w : T is satisfiable in B¢ (i)} € Fg, (%)

then there is a f € w* such that for all ¢ € A¢, {i € w: f(i) satisfies ¢ in Be(i)} € Feqq.
Suppose we have constructed Fe¢. We construct Feyq. Let FE’ be a generating subset of F¢ with

|[F{| < c. If (=) is false, let F¢i1 be the filter generated by Fy U {X¢} or F} U {w \ X¢}. Suppose (x).
Put P = Fn(w,w) = {p: p is a finite partial function from w to w}. For n € w, put

D, ={p€P:nedomp}.
ForAeFé and ¢1,..., ¢, € Ag, put
Eag,, ..on={p€P: (3 €dompn A)(p(¢) satisfies ¢1,..., ¢y in Be(i))}.

Each D,, is clearly dense. In order to show that each E4 . .. ., is dense, take p € P. By (%) and the
property A € F¢, we can take i € A\ domp and k € w such that k satisfies ¢1,..., ¢, in Be(i). Put
g =pU{(i,k)}. This is an extension of p in F4 4, . 0.

By using MA(countable), take a generic filter G C P with respect to above dense sets. Put
f=UG. Then FEH = FE/ U{Y, : ¢ € A¢} satisfies finite intersection property, where Y, = {i € w :
f(@) satisfies ¢ in Be(i)}. In order to check this, let A € Fy and ¢1,...,n € A¢. Then by genericity,
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we can take p € GNE4 o, .. 0,. S0 we can take i € dom pNA such that p(7) satisfies 1, ..., ¢, in Be(d).
Then we havei € ANY, N---NY,,.

Let Fgi1 be the filter generated by F' U {X¢} or FY' U{w \ X¢}.

We have constructed (Fe : ¢ <¢). In order to check that the resulting ultrafilter F' = (J_  Fe
witnesses SAT(Rg), let £ and B = (A, : i € w) satisfy the assumption of the theorem. Let A be a subset
of Fml(£*1) with |A] < ¢. Assume that for all I' C A finite, Xp := {i € w : I is satisfiable in B¢(i)} €
F. By the regularity of ¢, we have a < ¢ such that for all I' C A finite, Xp € F,. Let £ > «
be satisfying (L¢,Be, Ae) = (£,B,A). Then by (5), there is a f € w such that for all ¢ € A,
{i € w: f(i) satisfies ¢ in B(i)} € F. Thus [, A:i/F is saturated.

O

5.3 KT(X;) implies ¢? <0

In this section, we will show the following theorem. This proof is based on [She92, Theorem 1.1] and
[Abr10, Theorem 3.7].

Theorem 5.3.1. KT(Xy) implies ¢? <.

Definition 5.3.2. Define a language £ by £ = {E,U, V'}, where E is a binary predicate and U,V are
unary predicates. We say a L-structure M = (|M|, EM UM VM) is a bipartite directed graph if the

following conditions hold:
(1) UMuvM =|M|,
(2) UMNVM =g,
(3) (Vo,y € |M|)(x EM y — (x € UM and y € VM)).
Definition 5.3.3. For n, k € w with k < n, define a bipartite directed graph A, ;, as follows:
(1) UAnk ={1,2,3,...,n}
(2) VAne =[{1,2,3,...,n}]5F < {2}
(3) For u € UPAnk v € VAnk o EAnk g iff u € v.

Definition 5.3.4. For n € w, Let G,, = A5 ,,. Let T' be the disjoint union of (G,, : n > 2).
We define a natural order < on I' by z <y if m < n for z € G,,,y € G,,. Then I' is a bipartite
directed graph with an order <. Put £’ = £ U {«}. From now on, we consider £'-structures which are

elementarily equivalent to T'.
Definition 5.3.5. Let I'yg be a countable non-standard elementary extension of I'.

When we say connected components, we mean the connected components when we ignore the

orientation of the edges.

Lemma 5.3.6. Let M be an £’-structure that is elementarily equivalent to I". Then the connected

components of M are precisely the maximal antichains of M with respect to <.

54



Proof. Suppose that A C M is connected but not an antichain. Then we can find elements ag, ..., a, €
M such that

M E(agFay V arEap) A+ A (an—1Fan V apEan_1)A

(ap and a,, are comparable with respect to <).

By elementarity, we have n + 1 many elements in I' that satisfy the same formula. This is a contra-
diction. So every connected subset in M is an antichain.

Note that any two connected vertexes in I' have a path of length at most 4. Thus we have

I' = (Va,b)((a and b are incomparable with respect to <)
— (there is a path between a and b with length at most 4)).

By elementarity, the same formula holds in M. So every antichain in M is connected.
Therefore the connected components of M are precisely the maximal antichains of M with respect
to «. O

Therefore, < induces an order on the connected components of M and it is denoted also by <.

Lemma 5.3.7. Every infinite connected component C of I'yg satisfies the following:
(VF C CNU finite)(Jv € CNV)(v has an edge to each point in F).
Proof. Let F = {u1,...,u,}. Observe that

I'E (V1) ... (Vx,)[x1,. .., z, are points in U and belong to
the same connected component and
the index of this connected component is > n
— (Jy)[y belongs to this component, y € V and z1,...,z, F y]].

By elementarity, I'yg satisfies the same formula. O

Lemma 5.3.8. Let (A, : n € w) be a sequence of bipartite directed graphs with |[U%~| = [VA»| = X,.
Suppose that for each n € w,

(VF C U finite)(Jv € VA7) (v has an edge to each point in F).

Then for every ultraproduct R :=[], ., An/V, we have

new

(3(w; : i < 0) with each v; € V) (Vu € UR)(Fi < 0)(u EF v;).

Proof. We may assume that each U = w. Let {f; : i < 0} be a cofinal subset of (w*, <*). For each

n,m € w, take vy, ,, € VA~ that is connected with first m points in U%". For i < 9, put

Vi = [(Un, fy(n) 1 1 € W)].
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Let [u] € UT. Consider u as an element of w*. Take f; that dominates u. Then we have

{new:uln) B> v, )} €V.

Therefore [u] BT v;. O

Lemma 5.3.9. Let V be an ultrafilter over w and put @ = (I'ng)®/V. Then there exist cofinally many

connected components C with respect to < such that
(3(v; : i <) with each v; € CNVQ)(Vu € CNUD)(Fi < 0)(u E? v;).

Proof. Fix a connected component Cy of @ and [xg] € Cy. Then for each n € w, there is an infinite

component C,, above xg(n). Now
C={zx] €Q:z € (I'ns) and (Vn € w)(z(n) € Cy)}.

is a connected component of Q above Cy. Since C' can be viewed as C' = [],, .., Cn/V, the conclusion

of the lemma holds for C' by Lemma 5377 and Lemma bh-3°8. O

Lemma 5.3.10. Let £ < ¢ and U be an ultrafilter over w and put P = I'* /U. Then for every C in

a final segment of connected components of P, we have
(V(v; : i < k) with each v; € CNVP)(3u e CNUP)(Vi < k)(u BY v;).

Proof. Let f: w — T satisfy f(n) € G, for all n. Let Cy be the connected component that [f] belongs

to. Take a connected component C such that Cp<C and an element [g] € C. Take a function h: w — w

such that {n € w: g(n) € Gy} €U. Then A:= {n € w: h(n) > n} € U. Put h'(n) = max{h(n),n}.
Take ([v;] : i < k) with each [v;] € C NV, Then we have

Bi:={n € w:vi(n) € Gum N vireu.

Take v/ such that v}(n) = v;(n) for n € AN B; and v}(n) € [0/ (n)?|<M (™ for n € w. The assumption

k < ¢ and the calculation - . .
n
2 W = 2 W S 2r <

n>1 n>1 n>1

give a @ € [[ A such that for all ¢ < &, (V*°n)(z(n) € vi(n)). For each i < k, take m; such that

(Vn > ni)(z(n) & vi(n)).
Take a point [u] € C MUY such that u(n) = z(n) for all n € A. Then for all i < k we have

{new:un) B v;(n)} D ANB; N [n;,w) € U.

Therefore [u] £T [v;] for all i < k. O

Assume that 9 < ¢7. Then by Lemma 5310 and Lemma 539, for any two ultrafilters U,V over
w, we have I' /U # (I'ns)“/V. So = KT(Xg) holds. We have proved Theorem 5-371.

Fact 5.3.11 ([KM22, Lemma 2.3]). cov(N) < ¢

Corollary 5.3.12. In the random model, “KT(Rg) holds. O
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Proof. This corollary holds since X; =9 < cov(N) = ¢ in the random model. O

Remark 5.3.13. v" < ¢ follows from [KM22, Lemma 2.6]. So the implication KT(Xg) = 0 > ¢
strengthens the implication KT(RXy) = 2 > v".

Remark 5.3.14. In [She9?], Shelah constructed a creature forcing that forces the following statements:

(1) There are a finite language £ and countable L-structures A, B with A = B such that for all
ultrafilters U,V over w, we have A¥ /U % B¥/V.

(2) There is an ultrafilter & over w such that for every countable language £ and any sequence
((An, Bp) : n € w) of pairs of finite L-structures, if [],, ., An/U =11, c., Bn/U, then these ultra-

products are isomorphic.

new

Shelah himself pointed out in [She9?, Remark 2.2] item 2 holds in the random model. On the other
hand, we have proved item 1 also holds in the random model. Therefore both of above two statements

hold in the random model.

5.4 KT(X;) in forcing extensions

A theorem by Golshani and Shelah [GS?27] states that cov(M) = ¢ A cf(c) = Ny implies KT(X;). In
[GS22), it was also proved that cf(c) = R; is not necessary for KT(X;). In this section, we prove that

cov(M) = ¢ is also not necessary for KT(Ry).

Theorem 5.4.1. Let A > ¥ be a regular cardinal with A<* = \. Let (Pa,(@a i < wi) be a finite
support forcing iteration. Suppose that for all a < wq, Ik, “Qy is ccc and \Qa| < X’. And suppose
that for all even o < wy, Ik, Qa = C,. Here C, denotes the Cohen forcing adjoining A many Cohen
reals. Then, Ik, KT(X;).

Proof. This proof is based on [(G522, Theorem 3.3].

Let G be a (V,P,, )-generic filter.

Let £ be a countable language and M° = M! be two L-structures of size < ®; in V[G]. Take
sequences (M! :i < w;) for [ = 0,1 that are increasing and continuous such that each M} is countable

elementary substructure of M! and M! = [ M!. We can take an increasing sequence (q; : i < wi)

i<wi
of even ordinals such that M} € V[G,, 1] for every [ < 2 and i < wy.

For i < w; and B < A, let cg be the S-th Cohen real added by Qa

Take an enumeration (X, : v < A - wq) of P(w) such that (X, : v < A- (i + 1)) € V[Gq,+1] for every
i < wy. We can take such a sequence. The reason for this is that we can take (X, : A =i <y < XA+ (i + 1))
as an enumeration of P,, 41 nice names for subsets of w and put X, = (X,Y)G.

For each [ < 2, take an enumeration (f. : v < X-wy) of (M')“ such that f/l\-i-s-ﬁ € (M}« for every
i<wpand B <Xand (fL 1y <X (i+1)) € V[Ga,11].

For X' < A, let Gq, » denote G N (Pq, * Cy/).

Now we construct a sequence of quadruples ((U, gg, g,ly, Ay) 1y < A-wi) by induction so that the

following properties hold.

(1) Each U, is a filter over w.

(2) Forevery | <2,i<wy, S<Aandy=X-i+f, gL € (M))*NV[Gq,x,].
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3) For every [ <2 and i <wy, (¢} : v <A (i+1)) € V[Ga,11].
4) Each A, is an ordinal below A. For A-i <~y <+ < X-(i+1), we have A\, < Ay,

5) Fori<wyandl <2, {gl:y<A-i}={fl:y<X i}

7) If y <6 < A-wp, then U, C Us.

(

(

(

(6) EX-i <y <A (i+1), thenU, € V[Gaq,, \].

(

(8) If v < A-wi is a limit ordinal, then U, = ;. Us.
(

9) X, €Uyt1 or w~ X, € Uypg.

(10) If o(z1,...,2,) is a L-formula, vy = X -i+ f and v1,...,7 < 7, then Y, ,, ., defined below
belongs to U, 41:

Yo =tk €w i MY E o(g5, (k). 95, (k) & M} o(g3, (k), ..., g5, (K))}

(Construction) First we let Uy be the set of cofinite subsets of w.

Suppose that (Us : § <) and (g, g}, \s : 6 <) are defined. Now we will define gg,g}y,)\y and
Uy+1. Take ¢ and 3 such that v = X-i4 3.

Suppose that v is even.

Let ¢ = f2., where ¢, is the minimum ordinal such that f2 does not belong to {gj : § < ~}.

Take N < A such that M2, M}, (¢2:6 <7),{g}:0 <) € V[Ga, »]. Put A, = X + 1. Take a
1

bijection 7} : w — M} in V[Gq, x]. Define g} by g} =} oci,.

Put Y ={Y, ...y @(@1,...,2,) is a L-formula and v1,...,7, < v}. Now we show U, U Y has
the finite intersection property. In order to show it, let X € Uy, (¢, : ¢ € I) is a finite sequence of
L-formulas and ~vi,...,7,, for . € I are ordinals that are less than . It suffices to show that the set

D € V[Gq, 1] defined below is a dense subset of C:

D={peC: (Fkedom(p)NX)(Ve el
MY (g5 (k). g5, (K),g5(k)) & M gy (k), ... g5, (k)7 (p(K)))}.

We now prove this. Let p € C.
For each k € w and ¢ € I, put

1 if Mzo ':@L(ggf{(k)a"~7925L(k)793(k))

0 otherwise.

v(k,t) =
And for each k € w put
v(k) = (v(k,¢) : 0 € I).

Then by finiteness of 12, for some vy € 12, we have w \ v~ (vg) € U,.

For each ¢ € I, put

@L(mia'“ax%”y) if HO(L) =1

-, (xf,... 2} ,y) otherwise.

gpj(xiy"'ax;ﬂy)
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Put
b=y N\l ).
el

Then by the induction hypothesis (5), wi(’viv---%ﬂ wery € Uy. Sotake k € Xﬂv’l(vo)ﬁYw7m7,__%L wely
dom(p).

Since M = ({93 (), - - .gga(kz) tv € 1)), we have M} ¢((g5: (k), .- g}m(kz) cvel)).

By the definition of 1, we can take y € M} such that M} = gpj‘(g#i(k), . ,g}m (k),y) for every
v € 1. We now put ¢ = pU {(k, (7})"'(y))} € C. This witnesses denseness of D.

Now we define U£,41 as the filter generated by U, UY U {X,} or the filter generated by U, UY U
{w~ X5}

When ~ is odd, do the same construction above except for swapping 0 and 1. Since the above
construction below A - (i + 1) can be performed in V[Gq,+1], (B) in the induction hypothesis holds.
(End of Construction.)

Now we put U = |J U, which is an ultrafilter over w. Then the function

y<Awr
(([B)o, [g3lo) v < A-wi)

witnesses (M)* /U ~ (M')* JU. O

Corollary 5.4.2. Con(ZFC) — Con(ZFC + cof(N) = ¥; < ¢ + KT(X;)).

Proof. Let A denote the amoeba forcing. Let A > R; be a regular cardinal with A<} = \. Let
(P, Qu:a< w1) be a finite support forcing iteration such that for all even o < wy we have Ik, Q. =
C, and for all odd a < w; we have Ik, Q = A.

Then P, IF KT(X;) by Theorem 5471

Moreover, we have cof (N) = R since the amoeba forcing A adds a null set containing all null sets
coded in the ground model (see [R.J95, p. 106]). O

5.5 Uncountable cases

In this section, we discuss the principles introduced in the previous sections. The case where the
cardinality p of the language and the cardinality x of the underlying set of the ultrafilter are both Vg
was analyzed in detail. Here, the more general case is investigated. However, most of the results are

naive generalisations of the arguments in the previous sections.
Lemma 5.5.1. Let £ < &’ be two infinite cardinals. Then KT#()) implies KT, (A).

Proof. Fix a language L of size < p and two elementarily equivalent L-structures A and B of size < A.
By KT%(\), we can take a uniform ultrafilter & on k. Fix a uniform ultrafilter V on «’. Then the

ultrapowers of A and B by the ultrafilter U x V are isomorphic. O
Lemma 5.5.2. (1) KT%()) implies there exists a regular ultrafilter witnessing KT4(\).
(2) If A > &, then every witness for SAT% ()) is a regular ultrafilter.

Proof. First, we show (1). Take an ultrafilter & on x witnessing KT%(\). Take a regular ultrafilter V
on k. Then the product ultrafilter I =V is regular and witnesses KT#(\).
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Next we show (2). Take a witness U for SAT#(X). Let M = ([k]<®°, C) and consider M, = M*/U.
By an easy diagonal argument, we have |M,| > xT. Define a set of formulas p with a free variable =
by

p={"{a}. Cz7:a <k}

where {a}. is the equivalence class of the constant sequence of {a}. It can be easily checked that p is
finitely satisfiable and the number of parameters of p is x, which is smaller than |M,|. Therefore, by
SATX()), we can take f: Kk — M such that [f] satisfies p. This f clearly satisfies {i € k : a € f(i)} €U

for every o < k. Thus, U is a regular ultrafilter. O
Lemma 5.5.3. SAT%(X) implies KT#(A) for every A < 2%,

Proof. By regularity (Lemma 55-2), the ultrapowers have same cardinality. Thus uniqueness of satu-

rated models implies this lemma. O
Lemma 5.5.4. ~SATY (k7).

Proof. Take a witness U of SATYC (k). Let A = (k7F, <) and A, = AY. We have |A,| > |A| = .
Consider the following set p of formulas with one free variable x:

p={Ta.<x< (k") :a<kT}

This p is finitely satisfiable and the number of parameters occurring in p is k. Thus, by SATY (kT1),
we can take f: k — kT such that [f] realizes p. Put 8 = sup,., f(a). By B. < [f], we have
{a < k:B < f(a)} € U. This contradicts the choice of 3. O

Lemma 5.5.5. SATY°(xT) implies 2% = xt.

Proof. Take a witness U of SATY(kT) and assume x+ < 25, Let A, = (1, <)Y. We have |A,| = 2~

since U is regular (Lemma 657). Consider the following set p of formulas with one free variable x:
p={Ta.<a:a<rkt}

This p is finitely satisfiable and the number of parameters occurring in p is equal to ¥, which is
smaller than 2. Thus, by SATY°(k1), we can take f: kK — x* such that [f] realizes p. Then, this f

is unbounded, which contradicts that «™ is regular. O
Lemma 5.5.6. —~ KT (k7).

Proof. This proof is based on [Tsu27]. Let (M, <) be a linearly ordered set with cofinality ™. We

define an increasing continuous sequence (A; : i < k1) of subsets of M such that:
(1) For every i <kt A; is an elementary substructure of M.
(2) For every i < k*T, there is a; € A;41 such that for every b € A;, we have b < a;.
(3) For every i <kt we have |A4;| < |i] + No.

We show that the pair of A+ and A1+ is a counterexample of KT, (k7). Let U be an ultrafilter on

K.
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We claim that (A.+)Y has a cofinal increasing sequence of length k. In fact, ((a;). :i < xkT) is
a cofinal increasing sequence. In order to show it, take [f] € (A.+)¥. For each a < k, we can take
i < kT such that f(a) € A;,. Then i = sup,,, i, satisfies [f] < a;.

On the other hand, in (A,.++ )Y, every x+-sequence is bounded. In order to check it, take (b; : i < kT).
We write b; as b; = [fi], where fi: k — A,++. Since the set {fi(a) : i < kT, < K} has size less than
or equal to xT, we can take 8 < k™1 such that all the elements of this set belong to Ag. Then ag is
a bound of all b;.

So we have (A,.+ )" 2 (A,.++)Y. O

Theorem 5.5.7. Let k and p be infinite cardinals satisfying p < k. Then the following are equivalent.
(1) 27 = k.
(2) SATZ(27).
(3) SATY(x™)
(4) KTL(2%).

Proof. Recall that there is a xkT-good ultrafilter U on x. That is, for every language £ of size < x, all
U-ultraproducts of L-structures are k' -saturated. The implication 2% = k¥ = SATL(2") follows
from this fact.

The implication SAT# (k%) = 2% = kT is just Lemma b55.

The implication KT#(2%) = 2% = s follows from Lemma 558. O

Theorem 5.5.8. Let & be a regular cardinal. Then KTY(xT) implies b, = xt.

Proof. Take the same structure M as in Lemma b'56. Consider two elementary substructures A4, and
A+,

Take a regular ultrafilter U on  that witnesses KTh0 (k7). As we saw in Lemma 556, we have
(A JH) = i+

On the other hand, we have cf(A,) = x. So it holds that cf((A,)") = cf(k"/U).

Since the ultrafilter ¢ is uniform, we have b, < cf(k"/U).

By KT (k), the two models (A, )¥ and (A, ) are isomorphic. So we have b,, < cf(k*/U) = k™.
The other inequality is obvious. O

Theorem 5.5.9. SATYC (k) implies 2<2" = 2~

Proof. Fix a witness U for SATY(x). Let A < 2%. Define a language £ and L-structure A by £ = {C}
and A = ([k]<¥,C). We have |A| = k. Put A, = A*/U. Since U is regular (Lemma 557), we have
|A.| = k" =2". Let ¢: k*/U — A, be the function defined by:

[z]) = [({z(@)} : a < w)].

Fix F C k" /U of size A\. For X C F, we define a set px(z) of formulas with a free variable z by:
px(z) ={"uy) Sy e XJU{"u(y) L 271y € F\ X}

Each px(z) is finitely satisfiable and the number of parameters occurring in px (z) is A\. Therefore, by
SATR0(k), for each X C F, we can take [zx] € A, satisfying px(z). For distinct X,Y C F, we have
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[2x] # [2y]. Thus we have 2* = |[{[2x] : X C F}| < A, = 2. Since A < 2 was arbitrary chosen, we
have 2<2" = 2~ O
Theorem 5.5.10. Let x be a regular cardinal. Let u be a cardinal less than 2%. Then cov(M,) = 2~
implies KT# (k).

Proof. Note that the assumption cov(M,;) = 27 is equivalent to MA o« (Fn,(k, 2)).
Fix a enumeration of 2%.
Let £ be a language of size < p and A and A' are L-structures of size < x which are elementarily

equivalent.
Enumerate (A%)~ for i = 0,1 as

(AHF ={fl :a < 2"}
By a back-and-forth method, we construct a sequence of triples ((Uy, g%, gl) : o < 2%) satisfying:

€ (A",
€ (Ah",

1) g
(29
(3) U, is a filter on k generated by k + |af sets,
(4)
()

2
4) (U, : a < 27) is an increasing continuous sequence,

5) If p(xo,...,2n—1) is an L-formula and By, ..., B, < «, then the set

Yo (Borpny =16 € m: A =093, (€), -1 g5, (€) <= A" E0lgs,(9).---.95,_, ()}

belongs to Up1.

In the construction, when « is even, we put g0 = f,(y) where 7 is the least ordinal f,? &z {gg : B < al.
And P is the poset of partial functions of size <k from & to A'. This poset is forcing equivalent to
Fn,(k,2).

Take a generating set F of U, of size Rg + |«|. Then by using MA o~ (Fn(k,2)), take a P-generic
filter G with respect to the following family of dense sets of P:

De={peP:¢edomp} (for { € k)

and
EX,(goL:LEI),(’yi,...,’y;'“:LEI) :{p eP: (Elf € dom(p) mX)(VI’ € I)
(A% = (95 (8), - 95, (€).90(6) &
where X € F, (@, : ¢ € I) is a finite sequence of £-formulas and ~{,...,~;, for ¢ € I are ordinals less
than a.

We now prove that E := Ex (,,.e1),(¢,...v, uery is dense. Let p € P. For each § € x and ¢ € I,
put
1if A% = (95 (6):- -1 95 (£):9a(8))

0 otherwise.

’U(E’ L) =
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And for each £ € k put
v(€) = (w(&,0) € T).
Then by finiteness of /2, for some vy € 12, we have k \ v (vg) & Uy.

For each ¢ € I, put

o xf, ..z, y) ifu() =1

—@,(xf,..., 2}, ,y) otherwise.

oz, ... 2l L y)

Put
b=y N\ el ).
el

Then by the induction hypothesis (5), Yy (i, 41 ey € Ua. So take & € Xﬂvil(vg)ﬁYlp’(%”%L wen) N
dom(p).

Since A = (g5, (€), - - g5, (€) : v € 1)), we have A = 4({g3, (€), ... g5, (§) 1t €1)).

By the definition of 1, we can take y € A! such that A! |= goj‘(g%i €),... ,g}m (€),y) for every
v € I. We now put ¢ = pU{(&,y)}. This witnesses denseness of E.

Then we put g2 = |JG and letting U, 1 contain U, and the sets in (5) and have either the a-th
element of the enumeration of 2% or its complement.

When « is odd, do the same construction above except for swapping 0 and 1.

Then the construction guarantees that U = U, is an ultrafilter and that the function

a<2r

(([9aus lgalu) = o < 2%)
is an isomorphism from (A% to (AH)Y. O

Fact 5.5.11 ([VIn23, Theorem 4.3]). Let % be an inaccessible cardinal. Then cov(M,;) > A holds iff for

every X C k" of size <A thereis S € [],_, [x]=/!*! such that for all z € X we have {i < r : (i) € S(i)}

is cofinal in k.

Fact 65711 does not seem to generalize to anything other than inacessible cardinals. In fact, it is
known that when « is a successor cardinal, the cardinal invariant determined by slaloms as claimed

above is equal to 0.
Theorem 5.5.12. Let « be an inaccessible cardinal. Then SATY (k) implies cov(M,) = 2~.

Proof. Let U be a regular ultrafilter on s witnessing SATY" (k). Let X C x* of size <2*. Define a
language £ by £ = {C}. For i < k, define a L-structure A; by A; = ([k]<I"l, ). Since & is inaccessible,
we have |A;| = k. For z € x*, we define S, = ({z(i)} : i < k). Put A, =], Ai/U. Consider a set
of formulas p(S) defined by

p(S) ={"[S] C Sz e X}.

Then p(S) is finitely satisfiable and the number of parameters occurring in p(S) is <2%. Thus, by
SAT®(k), we can take [S] € A, realizing p(S). Then we have

Ve e X){i<k:z(i) € St} elU).
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But since our ultrafilter U/ is uniform, we have
(Ve e X)({i < k:2(i) € S(4)} is cofinal).

So by Fact b-5711, we showed cov(M,,) = 2". O
Theorem 5.5.13. Let # be a regular cardinal. Then cov(M,) = 2<?" = 2% implies SAT% (k).

Proof. Let (b, : @ < 2") be an enumeration of x".

Let LT = LU {cq : @ < 25} where the ¢,’s are new constant symbols and let Fml(£1) be the set
of all L1 formulas with one free variable.

Let ((Le,Te,Be, Ag) : € < 27) be an enumeration of tuples (£, T, B, A) such that £ is a language
of size <k, T: k = k+ 1, B=(A; : i < k) is a k-sequence of L-structures with i-th universe 7'(4) and
A is a subset of Fml(£T) with |A] < 2%, Here we used (2%)<?" = 2%. Ensure each (£, T, B, A) occurs
cofinally in this sequence.

For Be = (AS i < k), we put

Be(i) = (A5, bo(i) | Te(i),ba (i) | Te(), ... ),

o a fa<p .
which is a LT -structure. Here o | 8 = for o and (8 are ordinals.

0 otherwise
Let (X¢:& < 2") be an enumeration of P(k). We construct a sequence of filters (Fg : & < 27)
satisfying following conditions:

(1) Fy is the filter generated by a regularizing set for &.

(2) Fe C Feyq and Fe =, Fo for a limit &.

a<é
(3) Xf € F§+1 or K\ X§ S FE+1'
(4) F¢ is generated by < 2 members.

(5) If
(VT € [A¢]<M0)({i < & : T is satisfiable in B¢ (i)} € Fy) ()

Then thereis f € [], ., T¢(é) such that for every ¢ € A¢ we have {1 < s : f(i) satisfies ¢ in Be (i)} €
Fey.

Suppose that F¢ is constructed and (%) holds. Let
P = {p: p is a partial function of size < k from k to K}

This forcing notion P is forcing equivalent to the forcing adding a k-Cohen function.

Fix a generating set Fg' of F¢ of size < 2%. For each A € Fg’ and @1,...,9n € Ag, we put

Epp,...pn ={p € P:(Fi € dom(p) N A)(p(3) is element of T (1)
and satisfies ¢1,. .., @, in Be(7))}

By assumption (%), these E4 o, .., s are dense subsets in P.

.....
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So using MA <2+ (PP), we have a filter G of P that intersects all E4 ,,, . o, ’s. Put f(i) = (UG)@) |
T¢ (). Then we can extend our filter F to Fey1 such that for every ¢ € A¢ {i < k : f(4) satisfies p in Be(i)} €
Feyq1. Moreover we can extend this filter satisfying X¢ € F¢4q or K \ X¢ € Fgiq. This finishes the
construction.

In order to check that the resulting ultrafilter /' = (J,_,. F¢ witnesses SAT|(x), let £ be a language
of size < k and B = (A; : i € k) be a sequence of L-structures. We may assume that, for each ¢ < s,
the universe of A; is an ordinal. Let 7'(i) = the universe of A;. Let A be a subset of Fml(£") with
|A| < 2%. Assume that for all ' C A finite, X1 := {i € s : I is satisfiable in B(i)} € F. By the
regularity of 2 which follows from the cardinal arithmetical assumption of the theorem, we have
a < 2" such that for all I" C A finite, Xt € F,,. Let £ > « be satistying (L¢, Te, Be, A¢) = (£, T, B, A).
Then by (5), there is a f € [],_, T'(i) such that for all ¢ € A, {i € & : f(i) satisfies ¢ in B(i)} € F.
Thus [[,.,. A;/F is saturated. O

1ER

5.6 Open problems
The following three questions remain for the countable case.

Question 5.6.1. (1) Does KT(X;) imply a stronger hypothesis than mcf = X;? In particular does
KT(Ry) imply non(M) = N;?

(2) Does KT(Xg) imply a stronger hypothesis than ¢ < 9?7 In particular does KT(Xg) imply
non(M) < cov(M)?

(3) In the Sacks model, does KT (Rg) hold? (If in this model = KT(Xy) holds, we can separate KT(Rg)
and ¢ <0.)

The following figure can be drawn for an inaccessible cardinal .

2% = gt
\
cov(M,) = 2% = 2<%
SAT}(2") SAT" (1) g ATI;; )
COV(M£) =25
|

KTr(2F) ——————— > KTh (k) —————— KT% (k)

| |

b, =kt 777

In light of this, the following two questions naturally arise.

Question 5.6.2. (1) Can we eliminate the inaccessibility assumption from the result which states
SATY () implies cov(M,) = 257

(2) Can we prove the consistency of - KT’ (k) for an uncountable cardinal x?
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As for the second item, we obtain the following.
Theorem 5.6.3. Let  be an inaccessible cardinal. Then KT (k) implies 07 < 0. O
Here, for a cardinal x and ¢, h € £, letting [Jc = [],,. c(a) and S(c,h) =[], .[e(a)]<"), we
define
Voo .
vy . =min{|X]: X C []e (Vo € S(c,h)(3x € X)
(Vo < %) (36 € [, k) (x(a) & p(@))}-

Also, we define v} = min{v} ., : ¢,h € 5", and h diverges to co}.

However, for an inaccessible cardinal &, the consistency of 9, < vY is not currently known. The
situation differs from cardinal invariants at w in that forcing notions such as random forcing are not
known for higher cardinals, nor are good generalizations of properties such as w®-bounding proper

forcing.
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Chapter 6

Comparability numbers and

incomparability numbers

As cardinal invariants of a poset, the dominating number and the unbounding number are well-studied.
In this chapter, as new cardinal invariants of a poset, we introduce the comparability number and

incomparability number and determine their value for well-known posets.

Definition 6.0.1. Let (P, <) be a poset. We say F C P is a dominating family if for every p € P
there is ¢ € F such that p < q. We say F' C P is an unbounded family if for every p € P thereis g € F
such that ¢ £ p.

Define cardinal invariants 9(P, <) and b(P, <) as follows:

(1) 3(P, <) = min{|F| : F C P dominating family},
(2) (P, <) =min{|F|: F C P unbounded family}.
We call 9(P, <) the dominating number for P and b(P, <) the bounding number for P.

Definition 6.0.2. Let (P, <) be a poset. We say F C P is a comparable family if for every p € P
there is ¢ € F' such that either p < g or ¢ < p holds. We say F' C P is an incomparable family if for
every p € P there is ¢ € F' such that both p € ¢ and ¢ £ p hold.

We define cardinal invariants cp(P, <) and icp(P, <) as follows:

(1) ep(P, <) =min{|F|: F C P comparable family},
(2) icp(P, <) = min{|F|: F C P incomparable family}.
We call ¢p(P, <) the comparability number for P and icp(P, <) the incomparability number for P.

cp(P) is always defined. On the other hand, icp(P) may not be defined. icp(P) is defined if and
only if for all p € P there is ¢ € P such that p and ¢ are incomparable. This is equivalent to cp(P) > 1.

These cardinals are related to dominating numbers and bounding numbers: ¢p(P) < min{o(P),d(P*)}
and max{b(P),b(P*)} <icp(P). Here, P* is the poset with the reverse ordering of (P, <).

As invariants related to comparability numbers and incomparability numbers, we can consider

minimal sizes of maximal antichains and maximal chains.
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Definition 6.0.3. Let (P, <) be a poset. A subset C' C P is called a chain of P if members of C
are pairwise comparable. Similarly, a subset A C P is called an antichain of P if members of C are
pairwise incomparable.

Define invariants me(P) and mac(P) as follows:
(1) me(P) = min{|C| : C C P maximal chain}, and
(2) mac(P) = min{|A| : A C P maximal antichain}.

As can be easily seen, a maximal antichain of P is a comparable family of P. So we have c¢p(P) <
mac(P). We can also observe that:

Lemma 6.0.4. If icp(P) is defined and mc(P) is infinite, then we have icp(P) < me(P).

Proof. Since icp(P) is defined, for each p € P, we can take g, € P such that p and g, are incomparable.
Take a maximal chain C of P of size mc¢(P). Then the set C' := CU{q, : p € C} is clearly an

incomparable family since C' is maximal. The set C’ has also size me¢(P) since it is infinite. O

So we can draw a picture as in Figure 671 if icp(P) is defined and me(P) is infinite.

o(P) mac(P) o(P*)

~ 1 7

cp(P)

Figure 6.1: Relationships

The results in Table 6.1 are well-known.
Table 62 summarizes almost all results we will prove in this paper.
As results not listed in the table, in Section 610, we treat ideals on w, and in Section 611, we treat

ideals on w1.

P [o(P) [b(P) [oa(P) [b(P)
(w¥ N 0,<*) 0 b ¢ 2
(P(w)/fin)~ ¢ 2 ¢ 2
(Borel(2¢)/ M)~ Ro 2 Rg 2
(Borel(2¥) /N)~ cof(N) | 2 cof(N) | 2

N~ {2g},9) cof (V) | add(W) | ¢ 2

(M~ {2},9) cof (M) | add(M) | ¢ 2

the Turing degrees || ¢ Ny c 2

(Bw \ w, <rk) 2°¢ ¢t depends | depends

Table 6.1: Known results
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P [ ep(P)  [icp(P) | mac(P) [ me(P)

(w? N 0,<*) 0 b ¢ c
(P(w)/fin)~ v 2 ¢ c
(Borel(2¢¥) /M)~ Ro 2 ? c
(Borel(2¢¥) /N)~ cof(N) | 2 ? c

(N~ {g},Q) cof(N) | add(N) c non(N)
(M~ {o2},9) cof(M) | add(M) c non(M)
the Turing degrees || ¢ Ny c Ny

(Bw \ w, <rK) depends | ¢ or undefined | ? ¢t

Table 6.2: Our results

Finally, we give an example of a poset with small comparability number. Let P = {0,1} x Z and
order P by
(i,m) < (j,n) <= (i=jAm<n)V(i#jAm<n).

Then, since {(0,0),(1,0)} is a maximal antichain, we have mac(P) = ¢p(P) = 2. On the other
hand, we have 0(P) = 0(P*) = b(P) = b(P*) = icp(P) = No.
6.1 General lemmas
The following 3 lemmas are well known and easy to see.
Lemma 6.1.1. Let P be a poset. Suppose that P has the following property:
If a < bin P then there is ¢ € P such that a < ¢ < 0. (%)

Then P embeds the set of rational numbers Q.

Lemma 6.1.2. Let P be a poset. Assume P has the property in Lemma 611. Moreover, suppose

that P has the following property:

If {a,, : n € w) is an increasing sequence of P and (%)
(b, : m € w) is a decreasing sequence of P and
(Vn,m € w)(a, < by,) holds,
then there is ¢ € P such that (Vn,m € w)(a, < ¢ < by,).

Then P embeds the set of real numbers R.

Lemma 6.1.3. Both () and (**) in Lemma 611 and 612 are inherited by any maximal chains.

6.2 The cardinal invariants of w¥

In this section, we determine the comparability number and the incomparability number of w® as a
first result.

I This result was obtained by [ICCHNMIG]
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Definition 6.2.1. Let 0 be the set of eventually zero reals, that is,
0={zecw’: (V°n)(z(n) =0)}.

We consider the poset (w® \ 0, <*).
Lemma 6.2.2. b <icp(w® N\ 0) and cp(w® ~ 0) <2 hold.
Proof. This is immediate from the definition. O

The proofs of the following two propositions (Proposition 6223 and 6:24) are suggested by an

anonymous reviewer.
Proposition 6.2.3. icp(w® \ 0) < b holds.

Proof. Take an unbounded family F' C w* \ 0 of size b. For f € F, we define f,, f, € w* as follows:

f(n/2) (if n is even)

f =1, (if 7 is odd)

0 (if n is even)

fo(n) = . .
f((n—=1)/2) (if n is odd)

Then the set {fo : f € F} U{f, : f € F} is an incomparable family. To see it, fix ¢ € w* ~\ 0. Then
the set {n € w : g(n) > 0} is infinite. So either {n even number : g(n) > 0} or {n odd number :
g(n) > 0} is infinite. If {n even number : g(n) > 0} is infinite, then there is f € F such that
(92n+1):new) <> f. We can deduce from it that g and f, are incomparable. In the case

{n odd number : g(n) > 0} is infinite, a similar proof can be done. O
Proposition 6.2.4. ? < cp(w® \ 0) holds.

Proof. Take a comparable family C of size ¢p(w® ~\ 0). We produce a dominating family D such that
|D| < |C]. If |C| = ¢, then such D exists obviously. So we can assume that |C| < c.

Fix an almost disjoint family A of size ¢. Since |C| < |A| and A is almost disjoint, we can take
A € A such that for all f € C, we have =({n : f(n) > 0} C* A). Note that f <* g in w* implies
{n: f(n) >0} C* {n:g(n) > 0}. So for every g € w* with {n: g(n) > 0} = A and f € C, we have
—(f <* g). But since C is a comparable family, for every g € w* with {n : g(n) > 0} = A there is
f € C such that g <* f.

Let 7: w — A be a bijection. The observation in the previous paragraph implies

D={for:feC}

is a dominating family. Since |D| < |C/|, we are done. O

Thus, we have icp(w” \ 0) = b and cp(w” \ 0) =9, but it is natural to ask whether these can be

shown by Tukey reducibility. Theorem 626 below answers this.
Definition 6.2.5. Define a relational system ICP as follows:

(1) ICP = (w¥ N\ 0,w* N\ 0,<>® N >>).
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Theorem 6.2.6. There is a Tukey morphism from ICP to BF.

Proof. We use the notation ji for the minimum number of k-th interval in an interval partition
<Jk ke w>.
We have to construct maps ¢: w0 — IP and ¢: IP — w* \ 0 that satisfy the following condition:

Ifrxew’\0,J=(J;: k€ w) e IP satisty
(3°n)(Vk)(Jr € p(z)(n)) then x <> ¥(J) and x > ¥(J).

Enumerate {n : z(n) > 0} by {n: z(n) > 0} = {af < af < af < ...}. Define ¢ and 1 by the following
way:

@(x)(n) = [invin-‘rl),
where ig = 0 and i,,41 are such that the interval [i,,4,41) contains at least 3 points of the form af

and for all a < i, z(a) < i,41 and

min Ji1o (if n € Ji and n = min Jy)
Y(I)(n) =

0 (if n € Ji and n > min Jy).

We first show that z > (J). Take ny € w arbitrarily. Then we can take n > ng such that
(VE)(Jk € w(2)(n)). Let I, = p(x)(n). Then we take k such that I, N J, # &. Note that the number
of such & is less than or equal to 2. But we have at least 3 points af in I,,. So we can take af € I,, that
is not the leftmost point of intervals in J. We have af > a3, > 3n > ng, z(a¥) > 0 and ¢ (J)(a¥) = 0.
Thus we have x > ().

We next prove x <> 9(J). Let kg € w. By (3%°n)(VE)(Jr € ¢(x)(n)), we can take n such that
in > jr, and (Vk)(Jp € I,). Let k be such that i, € J. Then ji < i, and ip41 < jrt2 since there
are at most 2 intervals in J touching I,,. By the choice of 4,41, we have z(ji) < ipt+1 < jr+o. Thus
(k) < ¥(J)(Jk). Also, by i, € Ji, we have i, < jpt1. S0 Jro < in < Jr+1. Thus kg < k. Thus we
have proved z <> ¥(J). O

Theorem 6.2.7. mc(w” \ 0) =c.
Proof. Every maximal chain of w* \ 0 satisfies the assumption in Lemma 612, O

The following theorem was obtained through private communication with Jorge Antonio Cruz
Chapital.

Theorem 6.2.8. mac(w® \0) =c.

Proof. Let A be a maximal antichain of w* \ 0. Fix ¢ € A. Let X = {n € w: ¢¥(n) > 0}. Take a
family ((Aq, Ba) @ @ < ¢) of pairs of elements in [X]* such that A, N B, = @ for every o and A, U B,
and Ag U Bg are almost disjoint for every distinct o and . For a < ¢, we define g, by

Pn)+1 (ifneA,)
ga(n) = h(n) —1 (if n € By)
p(n) (otherwise).
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Define two sets Yy, Y7 C ¢ by

Yo={a<c:(3f € A)ga <* )}
Vi={a<c:(3f € A(f <" ga)}

Since Yy UY7 = ¢, we have either |Yp| =cor |Yi| =c.

Consider the case |Yy| = ¢. For each o € Yy, take f, € A such that g, <* f,. Then for each
a €Yy, we have {n : fo(n) < ¢(n)} C* B,. Note that {n : fo(n) < (n)} is an infinite set since f,
and v are distinct elements of A. Therefore, for distinct a and S, we have {n : f,(n) < 1(n)} and
{n: fg(n) < (n)} are almost disjoint. Thus, we have proved f, # fg whenever « and /3 are distinct.
So it holds that |A| = ¢.

The proof is similar for the case |Y;| = ¢. O

6.3 The cardinal invariants of Boolean algebras

In this section, we deal with (in)comparability numbers of Boolean algebras. We write the Boolean
operations as +, - and (—): join, meet and complementation. Moreover, 0 and 1 mean the minimum

and maximum elements of the Boolean algebra.

Definition 6.3.1. Let B be a Boolean algebra. Then we define B~ by
B~ =B~ {0,1}.

Lemma 6.3.2. Let B be a Boolean algebra that is not equal to {0,1}. Then icp(B~) = 2.

Proof. Take an element b € B~ {0,1}. Then F = {b, b} satisfies
(Vze B )3y e F)a £y &y £ )

In order to show this, let x € B~. Assume that x < b or b < z. In either case, we can easily show that
both = £ b° and b° £ z. O

Definition 6.3.3. Let B be a Boolean algebra and D be a subset of B ~\ {0}. We say D is weakly
dense set of B if for all b € B ~\ {0} there is d € D such that d < b or d < b°. Put

wd(B) = min{|D| : D is weakly dense set of B}

Lemma 6.3.4. If B is an atomless Boolean algebra, then wd(B) is infinite.

Proof. Suppose that D is a finite weakly dense set. Let D’ be the set of finite meets of elements of D
that is not equal to 0. Let D” be the set of minimal elements of D’. Then D" is a finite weakly dense
set such that for every distinct d,e € D”, we have d-e = 0. We may assume that the given D has this
property.

Enumerate D as D = {dg,...,d,—1}. For each i < n, take an element e; such that 0 < e; < d;.
We can take these elements since B is atomless. Put b = ey + - + e,_1. Then we have d; £ b and

d; £ b° for every @ < m. This is a contradiction. O
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Lemma 6.3.5. Let B be a Boolean algebra. Then we have ¢p(B~) < 2wd(B) and wd(B) < 2cp(B™).
In particular, if either ¢p(B~) or wd(B) is infinite, then we have ¢p(B~) = wd(B).

Proof. First we show wd(B) < 2cp(B~). Let C be a comparable family of B~ of size ¢p(B~). Then
C''= CU{c® : c € C} is a weakly dense set of B. Now we have |C’| < 2|C| = 2cp(B~). So
wd(B) < 2cp(B7).

Next we show ¢p(B~) < 2wd(B). Let D be a weakly dense family of B of size wd(B~). Then
D' = DU{d®: d € D} is a comparable family of B~. Now we have |D’| < 2|D| = 2wd(B). So
(B~ < 2wd(B). O

6.4 The cardinal invariants of P(w)/fin

Corollary 6.4.1. ¢p((P(w))/fin)") = . ]
Proof. This follows from Lemma G375, O

The following fact was discovered by G. Campero-Arena, J. Cancino, M. Hrusék and F. E. Miranda-

Perea.

Fact 6.4.2 ([CCHMI16, Corollary 2.4]). mac((P(w)/fin)~) =c.

6.5 The cardinal invariants of the Cohen algebra and the ran-
dom algebra
Corollary 6.5.1. cp((Borel(2¥)/N)~) = cof(N).

Proof. This follows from Lemma 635 and Theorem 1 in [Bur&Y] that states that wd(Borel(2¥)/N) =
cof (N). O

Proposition 6.5.2. mc((Borel(2¥)/N)~) = mc((Borel(2¥)/M)™) = c.

Proof. This follows from the fact that the above two Boolean algebras are o-complete and lemmas in

Section B O

6.6 The cardinal invariants of the ideal N

In this section, we determine the values c¢p(N \ {@}) and icp(N ~ {2}).

Fact 6.6.1 ([BJY5, Lemma 1.3.23]). Suppose that {a, : n € w) is a sequence of reals in (0,1). Then
there is a sequence (A,, : n € w) of open sets of 2¢ such that it is independent in the sense of probability

theory and p(A,) = ay,.

Lemma 6.6.2. If 7 C N is a family of size less than cof (), then there is a B € N such that for all
A € F we have |B\ A| =c.

Proof. This proof is based on [RBJ95, Lemma 2.3.3]. Let C = {S € (w<¥)¥: Y (fﬂ))L < 0o}. And for
S,S8" € C, define S < S" by S <8 <= (V*°)(S(n) C S’(n)). It is known that C and N are Tukey

equivalent. So it suffices to show that C <t (N, N,C*). Here A C* B means that |A \ B| < ¢.
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We have to construct ¢, such that p: C - N, ¢: N = C and (VS € C)(VG € N)(p(S) C* G —
S < ¢(G)) hold.

By Fact 661, fix a sequence (G,,; : n,i € w) of open sets such that G, ; has measure 1/(n + 1)?
and the sequence (G,,; : n,i € w) is independent.

Define ¢: C — N by
-N U U G

mewn>mieS(n

For G € NV, fix a perfect set K& of positive measure such that G N K = @. We can assume that
K%NU # @ implies (K% NU) > 0 for every basic open set U. Let (U, : n € w) be an enumeration
of all basic open sets U such that K¢ NU # @. Put

AY ={jew:K°NU,NG;; =2}

Then we have

0<uKNU,) <p ﬂ ﬂ 2N G _H H 1(2Y N Gij).

i€w je AG 1€w je AG

n,i n,i

So we have
1A% ;1
0< .
H ( (i+1)2 )
So by the relationship between convergence of infinite sums and that of infinite products, we have

A%

iezw (¢ +n,11)2

Therefore, we showed that A,Cf ,€C.
Take a slalom S € C such that (AS;
this S.
We have to show (VS € C)(VG € N)(¢(S) C* G — S < ¢(G)). Fix S € C and G € N. Then we
have |p(S) N K| < [p(S) N\ G| < ¢. Since ¢(S) N K¢ is a Borel set, we have |p(S) N K| < R, by the
perfect set theorem.

‘We have

14 € w) < S for all n € w. Define 1(G) by letting ¢(G) be

NEnlJ U G () (K~ {a}) =

mew n>mieS(n) z€P(S)NKEC

So by the Baire category theorem applied to the space K, at least one term in the above intersection
is not dense in K“. So, there is a ng € w such that K& N Unz”0 UiES(n) G,i is not dense in K¢,
So we can take m € w such that K¢ N U,, N Unsno Uies(n) Gni = @. Then we have (Vn > no)(Vi €
S(n)) (K¢ NUpNGypi = 2). So we have (V*°n)(S(n) C AS ,, € ¢(G)(n)). Thus S < ¢(G) holds. O

Theorem 6.6.3. cp(N \ {@}) = cof(N).

Proof. Tt is clear that ¢p(N \ {@}) < cof (N). So it suffices to show cof (N) < ep(N \ {@}).
Suppose £ < cof(N) and take F C N \ {@} of size k. Then by Lemma 662, we can take
B € N such that for all A € F we have |[B ~\ A| = ¢. For each A € F, fix an element 4 € A. Put
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B'=B~{zs: A€ F}. Then B is aincomparable with all A € F, since z4 € AN B and [B\A| =¢
and |B\ B'| <. O

Theorem 6.6.4. icp(N \ {@}) = add(N).

Proof. 1t is clear that add(N) < icp(NV \ {@}). So we have to show that icp(N \ {@}) < add(N).
Take a sequence (A, : a < add(N)) of null sets whose union is not null. Put B, = Aa ~\ Ug, Ap-
Then F = {B, : a < add(M)} \ {@} is an incomparable family. To prove this, let C € N \ {&}.
Since we have C € N and |JF € N, there is an o < add(N) such that B, € C. If C € B, holds, then
we are done. If C C B, holds, then we take another piece Bz. Then C' and Bg are disjoint nonempty

sets, in particular, they are incomparable. O
Proposition 6.6.5. mc(N) = non(N).

Proof. We first prove me¢(N) < non(N). Take a non-null set X = {z,, : @ < non(N)}. For each a, set
Xo ={zp: 8 <a}. Then {X, : @ <non(N)} is a maximal chain.

We next prove non(N) < mc(N). Take a maximal chain C of N'. We have |JC ¢ N. In fact,
otherwise, we can extend the chain C upwards. Set X = JC.

For each x € X, put

L,={CeC:x¢C},
R.={D eC:x € D}.

Then we have £, UR, = C (disjoint union) and for every C € L, and D € R,, C C D. We put
D, = R,. By maximality of C, we have D, € C. In addition, it can be easily shown that the map
X 5 x— D, €C is injective.

Therefore, we have non(N) < |X| <|C|. So it holds that non(N) < me(N). O

Proposition 6.6.6. mac(N \ {2}) =c.

Proof. This proof is based on [CCHMIA, Proposition 2.3]. Clearly, {{z} : x € 2¥} is a maximal
antichain of A"\ {@}. So we have mac(N ~\ {@}) <.

Let A, A" € N be such that |A] = |A’| = ¢ and AN A’ = @. To prove mac(N \ {@}) > ¢, let A
be an antichain of size <c. Let C be the closure of AU {4, A’} under the operation of finite unions,
finite intersections and taking difference sets. Since we have |C| < ¢, which is the density of each of
P(A) {2} and P(A") \ {2}, we can take Cy C A" and C; C A nonempty such that

~(3B e~ {@})(B C Cyor BCOy). (+)

Set D = (A~ Cy)UCy.

We claim D ¢ A. If D € A holds, then we have D\ A = Cj € C \ {@}, which contradicts (). Fix
X € A arbitrary. We next claim D and X are incomparable. If D C X, then AN X C AN D = (]
holds. This contradicts AN X € C\ {@} and (). If X C D, then X N\ A C D~ A = Cj holds. This
contradicts X N\ A € C \ {@} and (x).

Therefore, we have AU {D} is bigger antichain than A. So A is not maximal. O
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6.7 The cardinal invariants of the ideal M

In this section, we determine the values e¢p(M \ {@}) and icp(M ~\ {&}) by the same method as in

the previous section.
Definition 6.7.1. For an interval partition I = (I, : n € w) and a real 2 € 2¥, we put
Match(z,I) ={y € 2¥: (Fn)(z [ I, =y [ I.)}.
Fact 6.7.2. (1) Match(z,I) is a comeager set for every interval partition I = (I, : n € w) and every
real x € 2¢.

(2) [RIal0, Theorem 5.2] For every meager set A C 2¢, there is an interval partition I = (I, : n € w)
and a real x € 2¢ such that A N Match(z,I) = @.

Lemma 6.7.3. Let I = (I, :n € w),J = (Jx : k € w) € IP and z,y € 2¥. Suppose that |J;| > 2 for

every k. Then the following are equivalent.
(1) Match(z,T) € Match(y, J).
(2) The set Match(z,I) \ Match(y,J) has size c.
(3) 3*n)(VE)(Jx L Lnor x| Ji #y I Ji)

Proof. This lemma is an improvement of [Rlalll, Proposition 5.3]. That (2) implies (1) is clear.
Moreover, that (1) implies (3) is not difficult. So we shall show (3) implies (2). Take an infinite set
A C w such that

(Vne A)VE)(Jy L Lyora [ Jp £y | Ji). (%)

We can assume that
(Yn)({n,n+ 1} Z A). (xx)

Let

A" ={n € A:nis 2l-th element of A for some [}
A" ={n e A:nis (2l + 1)-th element of A for some [}

For z € 2%, we put

x(m) (it m € Upear In)
wo(m) = < z(1) (if m is I-th element of | J,,c 4 {minI,})

1 —y(m) otherwise

Since (Vn € A")(w, | I, = z | I,,) holds, we have w, € Match(z,I).

We now prove that w, ¢ Match(y,J). In order to prove it, let k € w.

Suppose that there is an n € w such that J, C I,,. If n € A’ then wehavew, [ Jy =x [ Jpy Zy | Jx
by (x). If n € A’, then we have either n € A” or n € w ~ A. In the former case, w,(m) # y(m) for
m € Ji ~ {min I, }. Here we used |J| > 2. In the latter case, we have w,(m) =1 — y(m) # y(m) for
every m € Jg.
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Suppose that for every n € w we have Jp € I,. Then J touches at least 2 intervals in I. At
least one of these intervals I,, satisfies n € A by (xx). Fix such an n. For m € J; N I,,, we have
w,(m) = 1—y(m) # y(m). So we have proved (Vk)(w, | Jx #y | Ji). Thus, we have w, ¢ Match(y, J).

Since w, (z € 2¥) are distinct reals, we are done. O

Lemma 6.7.4. If F C M is a family of size less than cof(M), then there is a C' € M such that for
all A € F we have [C \ A| =c¢.

Proof. For A € F, take x4 € 2% and I4 € IP such that A N Match(z4,14) = @. Since each
Match(z 4,14)° is meager set, by the definition of cof(M), we can take B € M such that B \
Match(z4,14)° # @. Take y € 2% and J € IP such that B N Match(y,J) = @. We can as-
sume that |Jx| > 2 for every k € w. Then we have Match(y,J)¢ ~ Match(x4,14)¢ # @. That is,
we have Match(za,14) \ Match(y,J) # @. So by Lemma 673, Match(za,l4) ~ Match(y,J) has
size ¢. Now put C' = Match(y,J)°. Then C is meager and for all A € F, we have |C' \ A| >
[Match(z4,14) ~ Match(y,J)| > ¢. So C witnesses the lemma. O

Theorem 6.7.5. ¢p(M ~ {@}) = cof (M).

Proof. This theorem can be shown by the same proof as Theorem 663 using Lemma 674 instead of

Lemma 667 O
Theorem 6.7.6. icp(M \ {@}) = add(M).

Proof. This can be shown by the same argument as Theorem 664, O
Proposition 6.7.7. mc¢(M) = non(M) and mac(M \ {@&}) = ¢ hold.

Proof. This proposition can be shown by the same argument as Propositions 665 and 66.6. O

6.8 The cardinal invariants of Turing degrees

In this section, we deal with the Turing degrees. Let Dt denote the poset of all incomputable Turing
degrees.

The following fact is well-known.
Fact 6.8.1. mac(D") = ¢ and me(DT) = N;.

Proof. Since DT is o-upward directed, we have that mc(D™T) is uncountable. Moreover, since each
downward cone of DT is countable, we have me(D1) = N;.

Since there are ¢ many minimal elements in D, we have mac(DT) < ¢. Suppose that there is a
maximal antichain A of size less than ¢ of D*. Then Al = {z € D" : (3y € A)(z <7 y)} has also
size less than ¢. Thus, we can take a minimal element that does not belong to AJ. This contradicts

maximality of A. O
Using the above fact, we prove the following proposition.

Proposition 6.8.2. ¢p(D") = ¢ and icp(DT) = N;.
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Proof. To show ¢p(DT) = ¢, we fix a comparable family A = (4, : « < k). Put A’ = {4: A <p
A, for some «a}. Since every downward cone in D is countable, we have |A’| = k. Fix B C w arbitrarily.
Then we can find « < & such that A, <t Bor B <t A,. In either case, we have (34 € A")(A <t B).
So A’ satisfies (VB)(3A € A")(A <t B). So A’ is a coinitial family. But in the poset of Turing degrees,
there are continuum many minimal elements. So we have ¢p(D1) > «.

Since the poset of Turing degrees is o-upward directed, we have icp(DT) > b(DT) > V.

By the previous fact, we have icp(DT) < me¢(DT) < R;. O

6.9 The cardinal invariants of the Rudin—Keisler ordering

In this section, we will focus on the Rudin—Keisler ordering on the set of nonprincipal ultrafilters on
w.

For the definition and basic properties of Rudin-Keisler ordering, see [Hall?].
Proposition 6.9.1. ?(fw \ w, <rk) = 2°.

Proof. Take a dominating family D of (fw \ w, <rk). Then we have UpeD pd = Pw N\ w, where p| is

the downward cone below p, whose size is < ¢. So we have 2¢ < ¢-|D|. Therefore we have |D| =2°. O
The next lemma is well-known.
Lemma 6.9.2. b(Sw \ w, <grgk) > ct.

Proof. Let (pa : @ < ¢) be a sequence of elements in Sw \ w. We have to show that there is an upper
bound of these p,’s. Take an independent family I = {f, : @ < ¢} of functions from w into w of size
¢. By independence, the set

{5 A) ra<c,Acp,}

has the strong finite intersection property. So there is an ultrafilter ¢ that extends this set. This ¢ is

above all p,’s. O

b(Sw \ w, >rKk) depends on models of set theory. If Near Coherence of Filters (NCF) holds, then
b(Bw \ w, >rK) > 2, but otherwise b(fw \ w, >rk) = 2.

Proposition 6.9.3. Assume there exist 2° many Ramsey ultrafilters. Then we have ¢p(fw \ w, <k
) = 2°.

Proof. Take a comparable family C' C fw \ w of size less than 2¢. Set ¢/ = {p € fw ~w : (¢ €
C)(p <mrk q)}. Then C’ is a coinitial family. But Ramsey ultrafilters are minimal in fw \ w. So C’
must contain all Ramsey ultrafilters. But the size of C’ is less than 2¢ because every downward cone

has size < ¢. This contradicts our assumption. O

Proposition 6.9.4. In the Miller model over a model of GCH, we have ?(fw \ w,>rk) < ¢. In
particular, ¢p(fw \ w, <gk) < ¢.

Proof. Note that in the model, NCF holds and there are exactly ¢ many P-points. So the set of all
P-points is a dominating family of size ¢ of the poset (Sw \ w, >grK).-

To show this, take an arbitrary ultrafilter p. And take a P-point ¢q. By NCF, there is r <grk p, gq.
Since the property of being a P-point is downward closed, r is also a P-point. So there is a P-point

which is below p. O
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Proposition 6.9.5. mc(Sw \ w, <gx) = b(fw \ w, <gk) = ¢T.

Proof. Take a maximal chain C of Sw~w. The size of C is less than or equal to ¢ since each downward
cone has size < ¢. Therefore we have m¢(Bw \ w, <gk) < ¢T.

So combining this fact and Lemma 692, we have
¢ <b(Bw N w, <pk) < me(Bw N\ w, <gk) < ct. ]

Proposition 6.9.6. If icp(Bw \ w, <gk) is defined, then icp(Bw \ w, <rk) = ™.
Proof. This follows from Proposition 6-95. U

It is a longstanding problem whether it can be proved in ZFC that for every p € Sw \ w there is
q € Pw ~ w such that p and g are incomparable. In other words, we don’t know whether ZFC proves
p(fw~\w) > 1.

6.10 The cardinal invariants of ideals on w

In this section, we consider the comparability numbers and incomparability numbers of the ideals on
w. In this section, A C* B means A \ B is finite for A, B C w.

For an ideal Z on w, recall that the additivity of Z, add*(Z) is defined to be the minimal cardinality
of A C T such that for every B € T there is A € A such that A Z* B.

Proposition 6.10.1. Let Z be an ideal on w that satisfies fin C Z. Then we have
iep(Z \ fin, C*) = add*(2).

Proof. Let k = add*(Z) and let (4, : @ < k) be a sequence of infinite Z-small sets such that
—(3C € I)(Va < k)(Ay CF C).
We construct a sequence (B; : i < k) of infinite Z-small sets such that
B; N By = @ for every i < k and (%)

~(3C € I)(Vi < k)(B; C* C). (x%)

We claim that we can take such a sequence. We will construct not only (B;:i < k) but also
(a4 1 < k). Assume we have constructed B; and «a; for j < i.

If i = 0, then put ap = 0 and By = Ap. If ¢ is limit, then put a; = sup,_; a; and B; = A,,.

Suppose i is a successor ordinal. Find the minimum index 8 > «;_; such that =(Ag C* A,, )
holds. We can take such j3, otherwise {A, : v < a;_1} is a family in (Z,C*) which contradicts
;-1 < k =add*(Z). And we put a; = § and B; = Ag \ A,,_,.

Then (x) is easily implied from the construction. We have to show (xx). Suppose that (3C €
I)(Va < k)(By C* C) holds. Take a < k arbitrarily. Take the minimum ¢ < s such that o < o;. This
¢ must be a successor ordinal. Write ¢ as ¢ = j + n where j is a limit ordinal and n > 1 is a natural
number. By the construction, we have A, C* A4,, ,.

Then we have

Ay C" Ay, , CBjUBj (1 U---UBji,, T C.
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Since « was chosen arbitrarily, this contradicts the choice of the sequence (A, : o < k).

We claim that {B; : i < k} is an incomparable family.

Take an element C' € Z \ fin. Then by (*x), we can find ¢ < k such that ~(B; C* C). For this 1,
if we also have —(C C* B;), then we are done. If C C* B;, then C and B;;; are almost disjoint, in

particular, they are incomparable. O

It is natural to conjecture that c¢p(Z \ fin, C*) = cof*(Z). In the following proposition, we prove it

partially.

Proposition 6.10.2. Let Z be a feeble ideal on w that satisfies fin C Z. And also assume cof™(Z |
A) = cof*(Z) for every A € ZT. Then we have cp(Z \ fin, C*) = cof*(Z).

Lemma 6.10.3. Let Z be a feeble ideal on w. Then there is an almost disjoint family of size ¢ of

Z-positive sets.

Proof. By Talagrand’s theorem, we can take an interval partition (I, : n € w) such that for every A € T
and for all but finitely many n, we have I,, ~ A # @. Take an almost disjoint family A of size ¢ of

elements in [w]*. Then the family

A={{JIL:AcA

neA

is as desired. O

Proof of Proposition 610-2. If ¢p(Z \ fin) = ¢ holds, then the conclusion obviously holds. Therefore,
we assume cp(Z \ fin) < ¢. Take a comparable family C' C Z \ fin of size ¢p(Z \ fin). By the previous
lemma, we can take an almost disjoint family A of size ¢ of Z-positive sets. Since |C| < |A|, we can
take A € A such that Y Z* A for every Y € C.

We claim that for every Z € Z | A with Z N A ¢ fin, there is Y € C such that Z C* Y U A°. To
prove this claim, fix Z € Z | A with ZN A ¢ fin. Then ZN A € T~ fin. Since C' is a comparable family,
we can take Y € C such that either ZNAC*Y or Y C* ZN A holds. But the latter case must not
happen. Thus the former case must happen and Z C* Y U A° holds.

By the above claim, ¢’ := {Y U A° : Y € C} is cofinal in Z | A. Therefore, we have cof*(Z |
A) < |C'| < |C| = p(Z ~ fin). By the assumption, cof*(Z | A) = cof*(Z) holds and we have the

conclusion. O

Corollary 6.10.4. ¢p(Z;,,, \ fin) = cof*(Z; ,,) = cof(N).

6.11 Weakly w;-dense ideals on w;

In Section 63, we defined wd(B) for a Boolean algebra B and showed wd(B) = ¢p(B ~\ {0, 1}) for an
atomless Boolean algebra B.

An ideal Z on wy is said to be w; dense if the density of the Boolean algebra P(wi)/Z is wy. Let
us define that an ideal Z on w; is weakly wq-dense when wd(P(w1)/Z) = w; holds.

It is known that the consistency strength of the existence of an wi-dense ideal on wy is w many
Woodin cardinals. So it is natural to ask what is the consistency strength of the existence of a weakly

wi-dense ideal on wy. In this section, we answer this question.
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Fact 6.11.1 ([RHM73, Theorem 3.1]). Let Z be a normal ideal on w;. Suppose that Z [ A is not wq
dense for every A € ZT. Then for every sequence (S, : a < wy) of Z-positive sets, there is a pairwise

disjoint sequence (A, : a < wy) of Z-positive sets such that A, C S, for every a < wj.

Theorem 6.11.2. Let Z be a normal, weakly wq-dense ideal on wy. Then Z | A is wi-dense for some
AcI™.

Proof. Suppose that Z | A is not wy dense for every A € TT. Let (S, : a < wi) be a sequence of
ZI-positive sets. Let us show that this family is not a weakly dense set. So we shall find B € Z* such
that S, €5 B and S, €7 w1 \ B for every a < w.

By Fact 6111, we can find a pairwise disjoint sequence (A, : @ < wy) of Z-positive sets such that
A, C S, for every a < wyi. Then we split each A, into two positive sets B, C,. This can be done
using the fact that there is no o-complete ultrafilter on w;. Let B be the union of B,’s. This B is as

required. O

Corollary 6.11.3. The consistency strength of the existence of a normal, weakly w;-dense ideal on

w1 is also w many Woodin cardinals. O

6.12 Open problems
The following questions remain.
Question 6.12.1. (1) What are the values of ¢p((N N Borel) \ {@}) and cp((M N Borel) \ {&})?

(2) Can we prove c¢p(Z \ fin,C*) = cof*(Z) for every ideal on w? In particular, can we prove this

inequality by Tukey reducibility?
(3) What are the values of mac((Borel(2¥)/M)~) and mac((Borel(2¥)/N)7)?
(4) In Miller model, what are the values of ¢p(Sw \ w, <gpk) and mac(Sfw \ w, <gk)?

(5) Can we prove theorems in Section 66 and 6.7 using Tukey reducibility?
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Chapter 7

Game-theoretic variants of cardinal

invariants

Contents in this chapter is joint work with Jorge Antonio Cruz Chapital, Yusuke Hayashi and Takashi
Yamazoe.

The study of cardinal invariants of the continuum is important in set theory of reals. On the
other hand, the study of infinite games is also an important topic in set theory. We study variants
of cardinal invariants using infinite games. The invariants we treat are the splitting number s, the
reaping number t, the bounding number b, the dominating number 0, and the additivity number of
the null ideal add(N).

Depending on the definition of each cardinal invariant, there are normal versions of games and
*_versions of games, and we consider 10 games in total.

In the normal version, Player IT must in each turn say 0 or 1. Player II wins if there is a real in the
prescribed family and the values of this real at the points where Player II chose 1 have the relation

*_version, Player II must in each turn

to the natural number that Player I said. In contrast, in the
choose a natural number. Player II wins if the real consisting of a play of Player II is in the prescribed
family and this real has the given relation to the real consisting of Player I's moves.

For each game, two cardinal invariants are defined: the minimum size of a family such that Player
IT has a winning strategy and the minimum size of a family such that Player I has no winning strategy.

Figure 71 summarizes our results.

Game-theoretic considerations of cardinal invariants can be found in [Kad00], [RHTTY], and [Schy6)
but our approach differs from these.

0 is the set of all eventually zero sequences and 1 is that of eventually one sequences.

7.1 Bounding games

In this section, we consider games related to unbounded families.

Fix a set A C w®. We call the following game the bounding game with respect to A:

Player 1 ‘ no n1
Player 11 ‘ io 11
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game xéame xgame
bounding b 0
bounding* b

dominating 0 0
dominating™* 0 ¢
splitting So c
splitting™ 5, < 7 < min{non(M),d,non(N)} ¢
reaping max {t,0} < ? < max {t,,0} c
reaping* ) )

anti-localizing add(N) cov(M)
anti-localizing™* add(N) ¢

Figure 7.1: Our results

Here, (ny : k € w) is a sequence of numbers in w and (i), : k € w) is a sequence of numbers in 2.
Player 1T wins when Player II played 1 infinitely often and there is g € A such that

{kew:ip=1}={kecw:n, <gk)}

We call the following game the bounding* game with respect to A:

Player 1 ‘ ng ni
Player 11 ‘ mo mi

Here, (ng : k € w) and (my : k € w) are sequences of numbers in w. Player IT wins when
(my + k € w) € A and (3%Fk)(nk, < my,).
Definition 7.1.1. We define

béame = min{|A| : Player I has no winning strategy
for the bounding game with respect to A},
bgamc = min{|.A| : Player II has a winning strategy
for the bounding game with respect to A},
b;ame* = min{|A] : Player I has no winning strategy
for the bounding* game with respect to A}, and
bgame* = min{|A| : Player II has a winning strategy

for the bounding™® game with respect to A}.

Since the star version is harder for Player II than the non-star version, we have the following
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inequality.

II II
bgamc S bgamc*
VI VI

I I
bgame S bgame*

Theorem 7.1.2. bl = b holds.

game

Proof. That blgame > b is easy. We show blgame < b. Take an unbounded family A C w*. Take Player
I's strategy o: 2<% — w. We want to show that ¢ is not a winning strategy for the bounding game
with respect to A.

Since 0 is a countable set, we can get f € w“ that dominates (c(i | k) : k € w) for every i € 0.
Since A is an unbounded family, we can take g € A such that f doesn’t dominate g. We now put
i€ 2% by

(if o(7 | k) < g(k))

) 1
1 =
0 (otherwise)

If i € 0, then (0(i | k) : k € w) does not dominate g by the choice of g. But this fact and the choice of
7 imply ¢ € 0. It’s a contradiction. So i € 0. Therefore i is a play of Player II that wins against Player
I’s strategy o. O

Theorem 7.1.3. b =9 holds.

game

Proof. We first prove bl <. Take a dominating family A C w® of (w*, <) (the total domination

game
order). Then the strategy that says 1 always is a winning strategy for Player II.

II
game"*

We next prove 0 < b Fix A C w* with a winning strategy of Player II for the bounding game
with respect to A. Consider the game tree T decided by the winning strategy. So every node in T of
even length has full successor nodes and every node in T of odd length has the only successor node

determined by the strategy. We first consider the next case:

e (Case 1) There is a o € T of even length such that for every even number r > |o|, there is i € 2
such that for all but finitely many m, for every 7 € T extending o, we have [7(r) = m =
T(r+1) =1

Fix a witness ¢ and (i, : > |o| even) for Case 1.

Then we have (3°°7) (i, = 1). Otherwise, we have (V°°r)(i, = 0). Then considering an appropriate
play of Player I, Player II says 0 eventually along the winning strategy. This is a contradiction to the
rule of the game.

Consider the increasing enumeration {r, : n € w} of {r € w : i, = 1}. For each n € w, we have
my, € w satisfying for every 7 € T extending o, we have [7(r,) > m, = 7(r, +1) =1]. Fix f € w*.
Consider the play of Player I that plays max{m,, f(n)} at stage r,/2. Since Player II wins, there is
g € A such that

max{ima, f(n)} < g(ra/2).

So A" = {{g(rn/2) : n € w) : g € A} is a dominating family. We have |A| > 0.

We next consider the next case:

e (Case 2) For every o € T of even length, there is an even number r > |o| such that for every i € 2,

there exist infinitely many m and there is 7 € T' extending o such that [7(r) = m AT(r+1) = i].
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In this case, we can construct a perfect subtree of T" and each distinct path of this subtree gives a
distinct element of A.

In detail, we construct 74, o5 and m§ < m§ for s € 2<° such that o,~;(rs) = ms, o4~ (rs+1) =i for
every i < 2. For each f € 2%, put oy = J,,c,, 0rtn. Since Il wins, we can take gy € A that witnesses o ¢
is a winning play. Take distinct f and f/in 2¢. Let A = min{n : f(n) # f'(n)}ands = f | A= f' | A.
We may assume that f(A) = 0 and f'(A) = 1. We have o¢(rs) = m{,o5(rs +1) = 0,04/(rs) = m}
and o/ (rs + 1) = 1. Then by the rule of the game, we have

95(rs/2) <mg <mi < gg(rs/2).

So we have gy # gy/. Therefore, we have |A| = ¢ in this case.

In either case, we have |A] >, so we have shown by, . > 0. O

I
game*

version of the evasion number. Moreover, in the article it was shown that this invariant is equal to b.

Using terminology in [RIal(, Section 10], b is equal to the global, adaptive, finite prediction

So we have blgame* = b. But for the sake of completeness, we include the proof.

Theorem 7.1.4. b. . = b holds.

game

Proof. Tt is clear that b < b} . We show b! <b.

game* game*
Take an unbounded family A of w*. Take an arbitrary strategy o: w<* — w of Player I. We have

to show that o is not a winning strategy for the bounding* game with respect to A.
Fix an enumeration (s; : i € w) of w<* that satisfies |s;| < ¢ for every i. For each s € w<¥ and

n € w \ |s|, we put

os(n) =max{z(n): s Cx € w” and (Vk > |s])(z(k) < o(z | k)}.

It can be easily checked that os(n) is in w. We define f by

f(n) =max({os,(n) : i <n}U{0}).

Take g € A that is not dominated by f. Consider the play in which Player I obeys the strategy o and
Player II plays g. Suppose that Player I wins. Then there is ng € w such that (Vn > ng)(g(n) < o(g |

n)). Take my € w such that s,,, = g [ ng. Then we have for every m > mq:

g(m) < o5, (m) < f(m).
This means that f dominates g, which is a contradiction. O

Theorem 7.1.5. bl

game*

= ¢ holds.

Proof. Fix A C w® such that Player II has a winning strategy 7 for the bounding® game with respect
to A. We shall show that A is of size ¢. Consider the game tree T C w<% that the strategy determines.

First, assume the following.

e (Case 1) There is a o € T such that for every odd k > |o|, there is an my < w such that for

every 7 € T extending o with |7| > k, we have 7(k) = my.

Fix the witness o, (my, : k > |o|) for Case 1.
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Consider the next play.

Player I | o(0) coo o(lo]=2) Mg| Mo|42
Player 1I | o(l) ... o(lo|—1) mq| M| 42

Then the sequence defined by the play of Player IT does not dominate that defined by the play of
Player I. So Player II loses. This is a contradiction.

So Case 1 is false. Thus we have

e (Case 2) For every o € T, there is an odd number k > |o| such that for every m < w, there is
7 € T extending o with || > k such that 7(k) # m.

Note that there are 79,71 2 ¢ with |1g], 71| > k such that 79(k) # 71 (k) in Case 2.

Now we can construct a subtree of 7' in the following manner. First we put oy = &. Suppose
we have (o : s € 25!). Then for each s € 2!, we can take 04~0,0,~1 2 0, and ks > |o| such that
os~o(ks) # os—1(ks).

Now for each f € 2%, we put oy by oy = ,,co, Ofin-

For each f € 2¢, we have o5 € [T]. So Player II wins at the play o;. So by the definition of the
game, we can take zy € A such that z,(k) = oy (2k + 1).

We now claim that if f and g are distinct elements of 2, then we have xy # z,. Let n := min{n’ :
f(n') #gn)}. Put s = f | n =g | n. We may assume that f(n) = 0 and g(n) = 1. We have the

following:

or (B ) = osth) = aumalh) £ oma(h) = 0y () = 2, (2230,

So we have ¢ # x4.
Therefore we have |A| > [{zf: f €2} = O

7.2 Dominating games

In this section, we consider games related to dominating families.

Fix a set A C w*. We call the following game the dominating game with respect to A:

Player 1 ‘ ng ni
Player 11 ‘ 10 i1

Here, (ny : k € w) is a sequence of numbers in w and (i; : k € w) is a sequence of numbers in 2.

Player II wins when Player II played 1 eventually and there is g € A such that
{kew:ip=1}={kew:ny <gk)}.

We call the following game the dominating® game with respect to A:

Player 1 ‘ no n1
Player 11 ‘ mo mq

Here, (ng : k € w) and (my : k € w) are sequences of numbers in w. Player IT wins when

(my + k e w) € Aand (V°k) (n, < my).
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We define Déamc,blggmc,blgamc* and Dgamc* by using dominating games and dominating® games in

the same fashion as Definition /11

Theorem 7.2.1. 0! =0l = D{game* =0 and ?ll = ¢ hold.

game game game*

Proof. 9 < Déame is easy. Dgame < 0 follows from the observation that for every totally dominating
family A, Player I has a winning strategy for the dominating game with respect to .A. So we have
0l ame = Ophme = .
game game
Dgame* = ¢ follows from bgame* = ¢ which was shown in Theorem 715, since the dominating* game
is harder for Player II than the bounding* game.

We know ? = 0! <l

game < Ogame+- S0 the remaining work is to show o < 0. To show it, let

game*

m: w — w<¥ be a bijection. Fix a dominating family F C w¥. For g € F, we define ¢’ € w* so that
(Yn)((gom )(g" I n) < g'(n)).
This g’ can be constructed by induction on n. Put
A={g g€ F}.

Take an arbitrary strategy o: w<* — w of Player I. We have to show that ¢ is not a winning strategy.
Since F is a dominating family, we can take g € F that dominates o o . Then for all but finitely
many m, we have

a(g' In)=o(r(r= (g [n))) < g(n™ (g I n)) < g'(n).

This inequality means if Player II plays ¢’, then Player II wins against Player I who obeys the strategy
0. So we have proved ¢ is not a winning strategy. O

7.3 Splitting games

In this section, we consider games related to splitting families. Moreover, using such games, we find a
new cardinal invariant 5Igame* that differs from previously studied cardinal invariants related to s.

Fix a set A C P(w). We call the following game the splitting game with respect to A:

Player 1 ‘ ng n1
Player 11 ‘ 19 i1
Here, ngp < ny < ng < --- < ni < ... are increasing numbers in w, i; (k € w) are elements in

{0,1}. Player II wins when Player II played each of 0 and 1 infinitely often and there is A € A such
that

{np:kewtnNA={ng:k€wandig=1} (%)
Fix a set A C P(w). We call the following game the splitting® game with respect to A:

Player 1 ‘ ) i1
Player 11 ‘ Jo Vi
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Here, (it : k € w) and (ji : k € w) are sequences of elements in {0,1}. Player II wins when either

Player I did not play 1 infinitely often or
{k€w:jr, =1} € Aand splits {k € w: i = 1}.

We define séame, sgame, séame* and 5game* by using splitting games and splitting* games in the same
fashion as Definition 1T

The splitting* game is harder for Player IT than the splitting game. More precisely,

Lemma 7.3.1. (1) If Player II has a winning strategy for the splitting® game with respect to A,
then Player IT has a winning strategy for the splitting game with respect to A.

(2) If Player I has a winning strategy for the splitting game with respect to A, then Player I has a

winning strategy for the splitting* game with respect to A.

We omit the proof of this lemma. We can deduce from this lemma that séame < 5Igame* and
11 11
5g;ame S 5g;ame* .
Theorem 7.3.2. 5éame = 5, holds.

Proof. First we prove slgame < s,. Fix a o-splitting family A C [w]¥. We want to show that Player I
has no winnng strategy for the splitting game with respect to A. Fix a strategy o: 2<% — w of Player
I. Since QU 1 is a countable set and A is a o-splitting family, we can take A € A such that A splits all
{o(i1k):kew}foriec0UT.

We consider the following i € 2¢:

(if o(i | k) € A)

) 1
1 =
0 (otherwise)

If i € 0U T, then A splits {o(i | k) : k € w} by the choice of A. But by the choice of i, this means
i € 0U 1, which is a contradiction. So we have i € 0U 1. This observation and the choice 7 imply 7 is a
winning play of Player II against the strategy o. So we have proved Player I has no winning strategy
for the splitting game with respect to A.

Next, we prove s, < 5éame. Fix a family A C P(w) such that Player I has no winning strategy
for the splitting game with respect to A. We want to show that A is a o-splitting family. Take
frw — [w]¥. We shall find an A € A such that A splits f(n) for every n € w. Take f': w — [w]*
such that ran(f) = ran(f’) and each element of ran(f) appears in the range of f’ infinitely often. For
m,n € w, we let f'(n)(m) denote the m-th element of f/(n) in ascending order.

Consider the following strategy o of Player I. First o plays f/(0)(0).

From then on, o will play the elements of f'(0) in turn until Player IT changes the value of play.
After that, o plays f'(1)(k) next. Here k is the smallest number such that f/(1)(k) exceeds the natural
number that o has said so far. Continue this process.

The following table is an example:

Player I | f'(0)(0) f(0)(1) f(0)(2) S )(k)
Player 1T ‘ 0 0 1

Since this o is not a winning strategy, there is A € A and i € 2* ~ (0 U 1) such that the equation
(%) holds for nj, = o(i | k). This implies A splits all elements in ran(f) by the definition of o. O
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Theorem 7.3.3. sL = ¢ holds.

game

Proof. Fix A C P(w) such that Player II has a winning strategy for the splitting game with respect
to A. We shall show that A is of size ¢. Consider the game tree T C w<¥ that the winning strategy
determines.

First, assume the following.

e (Case 1) There is an even number k € w and there is a ¢ € w*NT such that for every m > o(k—2)
there is 4, < 2 such that for every 7 € T extending o and every r € [|o|,|7]), 7(r) = m implies
T(r+1) =ipn.

Fix the witness k, o, (i;, : m > o(k —2)) for Case 1. Take an infinite set A C [o(k — 2),w) and
i* < 2 such that i,, = i* for every m € A. Enumerate A in ascending order as A = {a; : i € w}.

Then considering the Player I’s play that says ag, a1, as,... in turn after o, Player II that obeys
the winning strategy plays ¢* eventually. So Player II loses, which is a contradiction.

So Case 1 is false. Thus we have

e (Case 2) For every even number k € w and every o € w* N T, there is m > o(k — 2) such that
for every i < 2, there is 7 € T extending ¢ and there is r € [|o], |7]) such that 7(r) = m and
T(r+1)=1-1.

Then we can construct a perfect subtree of 7" whose distinct paths yield distinct elements of A by
using a method similar to Theorem 7 1°3 and 15,
Therefore we have |A| > [{A;: f € 2¥}| =c. O

11

By the remark below Lemma [Z371, we have also s, < Béamc* and Sy, = C.

I

In the following theorem, we give an upper bound of §y,,c-

Theorem 7.3.4. s!

game*

< non(M) holds.

Proof. Let A C P(w) be a non-meager set. Set A’ = AUOQUT. We prove that Player I has no winning
strategy for the splitting* game with respect to A’. Take an arbitrary strategy o of Player 1. Define
foreachz € 2¥, y, ={kcw:o(z | k) =1}.

Consider the following case:
e (Case 1) There is s € 2<% such that o(s7(0)"™) = 0 for every m.

In this case, if Player II plays s7(0,0,...), then Player II wins against Player I that obeys o, since
Player I plays 0 eventually.

Next, consider the following case:
e (Case 2) There is s € 2<% such that o(s™(1)™) = 0 for every m.

In this case, we also have the same conclusion as in Case 1.

So deny Case 1 and 2. Define a set C as follows:
C={x€2¥:xsplits y }.

We claim that C is a comeager set of 2.
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For m € w, consider the following sets:

Dy ={x €2 :(In>m)(z(n) =1and o(x | n)
Em={x€2¥:(In>m)(x(n) =0and o(z | n)

)}
)}

1
1

D, is an open dense set since we denied Case 2. Similarly, &, is an open dense set since we denied
Case 1.
So the set

C=(1Dm N[ )Em

is comeager. Since A is non-meager, ANC # &. An element in ANC is a play of Player II that wins
against Player I that obeys o. O

Theorem 7.3.5. s

game™*

< 0 holds.

Proof. Let {Is = (I5 | n < w) | £ < 0} be a dominating family with respect to interval partitions.
Define z¢ = |J
the splitting™ game with respect to AUOU 1. Take an arbitrary strategy o of Player I.

I5, and set A = {ze | € < 0}. We prove that Player I has no winning strategy for

n<w

Consider the following case:
e (Case 1) There is s € 2<% such that o(s~(0)™) = 0 for every m > 0.

In this case, if Player II plays s7(0,0,...), then Player II wins against Player I that obeys o, since
Player I plays 0 eventually.

Next, consider the following case:
e (Case 2) There is s € 2<% such that (s (1)) = 0 for every m > 0.

In this case, we also have the same conclusion as in Case 1.

So we can assume the following:
e (Case 3) For all s € 2<% and i < 2, there is m% > 0 such that 0(sA<i>mi) =1

Fix these m%’s and define a sequence (ji, | k < w) of natural numbers as follows:

jo=20

Jokai = Joksio1 +max{m’ | s € 292++i-1} for each i < 2.
Let Jx = [jok, jokt2)- Since {(I§ | n < w) | £ <8} is a dominating family, there is I such that
(3no < w)(Vn > no)(3k)(Jp C IY).

Let Ifl = [iﬁ,ifLJrl). Take an arbitrary n > ng and k such that J, C Iﬁ. Note that jor, jor+1 € Ji-
First, we consider the case n is even. Set m = mig Lo
jok +m < jog1 < i51. So it holds that o(z¢ | (jor +m)) = o((xe | jor) " (1)™) = 1. Thus, we have
ze(jor +m) =1 and o(z¢ | (jor +m)) = 1.

In the case n is odd, by a similar argument, we have that there is m > 0 such that z¢(jor +m) =0
and o(z [ (jar +m)) = 1.

Therefore x¢ is a play of Player II that wins against Player I that obeys o. O

> 0. By the construction of jx41, we have
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Theorem 7.3.6. s. < non(N) holds.

game*

To prove this theorem, we prepare some lemmas.

Lemma 7.3.7. Let I = [i,j) be an interval in w. Let s € {0,1}%, o: {0,1}</ — 2, and € € 2. Set

le,a( y={rec{0,1} s Ca,(Fkec)(o(x|k)=1),and
VkeD(o(zk)=1—z(k)=c¢)}.

Then we have .
BL(o) _1
211 2
Proof. Induction on |I|. If |I| = 1 then |BI (o) = [{s™(e)}| = 1. So in this case, the lemma is
proven. Suppose |I| > 2. If o(s) = 1, then |B! _(0)] < {z : s7(¢) C a}| = 27771, Otherwise, by the

induction hypothesis, we have

IN

‘BSI, (0)] = |B[1i'<101)(f7)( ) + |B[l+17j) (0)] < 9i—(i+1)-1 + 9i—(i+1)=1 _ gj—i~1

O

Lemma 7.3.8. Let a < b < w. Let [ = (I, : a < n < b) be a sequence of consecutive intervals in w
and put m :=minI, and M :=maxl,_; + 1. Let o: {0,1}M — 2 and ¢ € 2. Set

Bl(o) = {z € {0,1}M :(Vn € [a,b))[(3k € I,)(o(x | k) = 1), and
(VkeI,)(o(x | k)=1—z(k) =¢)]}.

Then we have

Blo) . 1
QM — 9b—a
Proof. Use the previous lemma and induct on b — a. O

We use the following theorem due to Goldstern, which we introduce in Chapter 3.

Fact 7.3.9 ([Gol93]). Let A C IP x 2¥ be a ] set. Suppose that the vertical section A; is null for
every I € IP and A; C Aj for every I,J € IP with I < J. Then Jzgp A7 is null.

Goldstern proved this theorem not with IP, but with w“. But these two versions can easily be

shown to be equivalent.

Proof of Theorem [1.3.6. Let A C P(w) be a non-null set of size non(N). We will show that Player
I has no winning strategy for the splitting* game with respect to A. Fix a strategy o: 2<% — 2 of
Player 1.

For I € IP and ¢ € 2, define

=UNs"0)

acw b>a

By Lemma 38, this set Csf is null.
Moreover when I < J, we have C! C C7. Also, the set {(I,z) : * € C!} is clearly a Borel set.
Therefore, we can apply Goldstern’s theorem to get that (J;cp C! is null.
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Moreover, we can easily observe that

{x € 2¥ : the strategy ¢ wins the play x in splitting® game} C U C’g U U C{_.
Ielp Ielp

So we can take x € A that avoids this set. This means ¢ is not winning strategy for the splitting*

game with respect to A. O

Fact 7.3.10 ([IS8R]). Assume CH. Then the splitting number s is preserved under finite support

iterations of Suslin ccc forcing.

Theorem 7.3.11. It is consistent relative to ZFC that s < st

game*

Proof. By the previous fact, it is enough to show that there is a Suslin ccc forcing P that forces
(Fo:2<Y 5 2)(Vz €2 NV)({k € w: o(z | k) = 1} is infinite and reaps z).
Define such a forcing poset P as follows:
P={(n,s,H):n€w,s: 25" — 2, H C 2¥ \ 0 finite}.
The order is as follows:

(n',s',H") < (n,s,H) <= n<n',sCs HC H and

(Vz € H)(Vi € [n,n)))(s'(z [ i) =1 — z(i) = 1).

Define a P-name ¢ as follows:

H—d:U{s:(n,s,H) € G}.

It is clear that P is Suslin and o-centered.

By the definition of the poset, it is also clear that
FVze2*~0NV){kecw:d(xk)=1} C" x).
In the case z € 0, w \ z is almost the entire set w, so it is clear that
F{kew:c(xk)=1} CFw\ ).
In the rest, we show
F(Vze2NV){k €w:d(x | k) =1} is infinite).
Take a (V, P)-generic filter G. Fix © € 2 NV and [ € w. Define the following subset E of P in V:
E={(n,s,H)e P:(Jie[l,n)(s(x i) =1)}.
We claim this is a dense set. To show this, fix (n,s, H) € P. Take n* > max{n,{} such that y [ n*’s
(y € HU{z}) are pairwise different. If = ¢ 0, take n’ > n* so that x(n') = 1, otherwise put n’ = n*.
Define s': 2<("'+1) _5 2 that extends s and s'(z [ n') = 1. If the other extended parts are set to 0, we

have (n/,s',H) < (n,s,H) and (n',s',H) € E.
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Therefore, we can take ¢ = (ng,sq,Hy) € G N E below p. Then there is ¢ € [[,ny) such that

sq(z 14) =1. So we have og(z [ i) = 1. O
Remark 7.3.12. Using a forcing notion defined Section 4 of [GKMS21] before we force by the finite
support iteration of P defined in the above theorem, we can also force that s, < 5Igame*. This is

because the forcing in [GKMS21] adds o-splitting family of size N; that is not destroyed by finite

support iteration of Suslin ccc forcing notions.

7.4 Reaping games

In this section, we consider reaping games and reaping* games, which are related to reaping families.

1

game < Max{t,,0}. Of course, if v = v, it would

The main result of this section is that max{e,0} <t

It is in fact an open question if it is consistent that v # t,. For more

turn out that max{r,0} =t} ..

information the reader may want to look at [RreYs].

Fix a set A C [w]“. We call the following game the reaping game with respect to A:

Player 1 ‘ no n1
Player 11 ‘ ) 11
Here, ngp < n3 < ng < --- < ng < ... are increasing numbers in w, i; (k € w) are elements in

{0,1}. Player IT wins when there is A € A such that
{np:kewtNA={ng:ke€wandi, =1} and A reaps {ny : k € w}.

We call the following game the reaping* game with respect to A:

Player 1 ‘ 10 i
Player 1I ‘ jo j1

Here, (i, : k € w) and (ji : k € w) are sequences of elements in {0,1}. Player II wins when Player
IT played 1 infinitely often and

{k€ew:jr=1} € Aand reaps {k € w: i = 1}.

We define t! ¢l ol and tl

game> Cgame: Cgame* game+ USING Teaping games and reaping™ games in the same

fashion as Definition 7-171.
Note that, when Player II wins in the reaping game, then the set A € A that witnesses Player II

wins satisfies the following condition.
(1) if (i : k € w) is eventually zero, A is almost disjoint from (ny : k € w).
(2) if the digit 1 appears infinitely often in (i) : k € w), A is almost contained in (ny : k € w) and
A= {’I’L;c : ik = 1}.

Theorem 7.4.1. ¢!l = ¢ holds.

game
Proof. Fix A C [w]“ such that Player IT has a winning strategy for the reaping game with respect to
A. Fix such a strategy. We shall show that A is of size ¢. Consider the game tree 7' C w<% that the
strategy determines.

First, assume the following.
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o (Case 1) Thereis a o € T of even length such that for every m > o(|o| — 2) there is i,, < 2 such

that for every 7 € T extending o and every r € [|o|, |7]), 7(r) = m implies 7(r + 1) = ip,.

Fix a witness o and (i,, : m > o(|o| — 2)) of Case 1. If i,,’s are eventually zero, clearly there is a
play that Player II loses along the strategy, which is a contradiction.

So im’s are not eventually zero. Take an infinite set X C [o(|o| — 2),w) such that i, = 1 for every
m € X. Considering Player I plays an arbitrary subset of X, Player II must accordingly produce an
A € A that is almost equal to this set. But the cardinality of [X]* /fin is ¢. So we have shown |A| = ¢.

Next, we assume the negation of Case 1. Similar to the proof of Theorem [7-3°3, in this case we can

construct a perfect subtree of T" whose different paths yield different members of \A. O

Theorem 7.4.2. t! > t,0 holds.

game —

Proof. That téame > t is easy. We show tlgame > 0. Fix a family A such that Player I has no winning
strategy for the reaping game with respect to A. For A € [w]¥, let e4 be the increasing enumeration
of A. Put

F ={ep : B is almost equal to some A € A}.

Then we have |F| = |A.

We shall show that F is a dominating family. So we fix an arbitrary increasing function g € w®.
Let us consider the following strategy of Player I: First play f(0). If Player II responds 0 then play
f(0) + 1, otherwise play f(1). In general, if in the last time Player I played f(I) + m and Player II
responded 0, then play f(I) +m + 1, otherwise, play f(I + 1) + m.

By the assumption, this strategy is not a winning strategy, so there is a Player II’s play i € 2% and
A € A such that A witnesses Player II wins with ¢ against the strategy.

Let (ng : k € w) be the corresponding play of Player I. If i is eventually zero, then (ng : k € w)
contains almost all integers in w. Moreover, by the rule of the game, A is almost disjoint from this set.
This cannot happen.

So the digit 1 appears infinitely often in i. Then A =* {ny : i, = 1}. Call the last set B. Then
ep € F and ep dominates f by the choice of the strategy.

Therefore, F is a dominating family. O

Define a cardinal invariant tgmat as follows:
tsimuly = Min{F C ([w]“)* : (V(A, € [w]Y :n € w)) (B, :n €w) €F)
[(3n)(Bo € w~ Ap) or (Vn)(B, € An)]}
It can be easily seen that v,0 < tgmult-
Proposition 7.4.3. tgmu < max{t,,0}.

Proof. Let R be a o-reaping family of size v, and D be a totally dominating family of w®“ of size ?.
For (C,h) € R x D, we let
BSM = C \ h(n).

We now show {(BS"" : n € w) : (C,h) € RxD} is a witness of temure. Fix asequence (A, € [w]* :n € w).
Since R is a o-reaping family, we can take C € R such that

(Vn)(C C* A, or C C*w~\ A4,).
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We first consider the case C' C* w \ A,, for some n. Take m such that C' ~m C w ~ A,,. Take h € D
such that h(0) > m. Then clearly, (BS"" : n € w) satisfies the condition of tgmuls-

We next consider the case C' €* w \ A,, for every n. Then for every n, we have C' C* A,,. Let
f € w* be such that C \ f(n) C A,,. Take h € D that totally dominates f. Then we also have
C ~ h(n) C A,. Then (BS" : n € w) satisfies the condition of tgjmu1s. O

Theorem 7.4.4. téame < tgimuit holds.

Proof. Fix a witness F of tgmult-
Using a bijection between w and w<*, we think F is a subset of ([w]*)“~"). That is, F satisfies

the following condition:

(V(A; € [w]¥ 1t € w<))(A(B;y : t € w¥) € F)

Fix B = (B, : t € w<¥) € F. We define (b5 : n € w) by

n

bP =,

b§+1 = bf”(min Bb§>-

Put ¢(B) = ran|J, bZ.
Define A by

A={p(B): Be F}U{X : B € F,X and By are almost equal}.

Note that |A] < |F].

We show that Player I has no winning strategy for the reaping game with respect to A.

Let 0: 2<% — w be an arbitrary strategy of Player I. Consider the tree T C w® defined as follows.
T Nw! = {{a(2)), ((0)),,(c(00)),...}. In general, the node whose label is o(s) has children whose
labels are o (s~ (1) (0)™) for m € w.

We now put for each t € w<¥

A — succr, (t) (fteT)

w (otherwise).
Then applying (%), we can take (B; : t € w<%) € F such that
(at)(B@ Cw\ At) or (Vt)(Bt - At)

Consider the former case: (3t)(By C w~ A;). Fix such a ¢. Then ¢ must be in T'. If ¢t = &, consider
the following play:

Player 1 ‘ . . .
Player 1T ‘ 0 0 0

The middle dots (-) in the first row mean the play along o. Then Bg, which is in A is a witness
that Player IT wins. Indeed, if (ns : k € w) is the play of Player I, then By C w ~ {ny : k € w}.
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If t # @, take s € 2<“ such that the label of ¢ is ¢(s). Consider the following play:

Player 1 ‘ : el ‘ . .
Player IT | 5(0) s(1) ... s([s|—1) | 1 0 0

Then a real almost equal to Bg, which is in A is a witness that Player II wins.

Consider the latter case (Vt)(B; C A;). Let A = p((B; :t € w<*)). Enumerate A by 4 = {a, :
n € w} in ascending order. Take the unique mg such that ag = o({0)""°) and put sop = (0)""°~(1). By
induction on k, take the unique my, such that ax = o (s~ (0)"") and put sg1 = s, (0)"* ™ (1). Put
i = Uy sk, which is a play of Player IL. Let (ny, : k € w) be the corresponding play of Player I. That is
nk =o(i | k). Then we have A € A and A = {ny : k € w,i, = 1}. So Player II wins.

Therefore, in either case, Player II wins. So ¢ is not a winning strategy. O

Because of the following theorem, the cardinal invariants regarding reaping® games are not worth

considering.

Theorem 7.4.5. For every A C [w]¥, Player I has a winning strategy for the reaping® game with
respect to A.

Proof. Consider the following strategy of Player I:
e Play 0 first.
e If Player II’s previous play is 1, change the move from the previous Player I’s play.
e Otherwise, play the same move as Player I's previous play.

It can be easily seen that this is a winning strategy. O

7.5 Anti-localizing games

In this section, we consider games related to the cardinal invariant add(N).
Let C = {¢ : ¢ is a function with domain w that satisfies p(n) € [w]**?! for every n € w}. We call
elements in C slaloms.

Fix a set A C w*. We call the following game the anti-localizing game with respect to A:

Player 1 ‘ agp ay
Player IT | io i

Here, (ax : k € w) is a sequence with ar € [w]*T! for every k and (i : k € w) is a sequence of

numbers in 2. Player II wins when Player II played 1 infinitely often and there is z € A such that
{kew:ir=1}={kew:a(k) & ax}.

We call the following game the anti-localizing* game with respect to A:

Player 1 ‘ ag aq
Player 1T ‘ g ny
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Here, (a : k € w) € C and (ny, : k € w) is a sequence of numbers in w. Player IT wins when
(ng : k € w) € Aand (3%Fk)(ny & ar).

We define add(N)L, o, add(M)EL - add(N)L, - and add(NV)IL . using anti-localizing games and

game) game) gam gam

anti-localizing®-games in the same fashion as Definition 7Z1-1.

Theorem 7.5.1. add(N)L, . = add(N\) holds.

game

Before proving this theorem, we recall the relationship between add(A) and slaloms.
Fact 7.5.2 ([Barl(, Theorem 4.11]). The following are equivalent.
(1) add(WNV) < &.
(2) There is a family A C w* of size < & such that (Vy € C)(3z € A)(I*°n)(x(n) € ¢©(n)) holds.

(3) There is a family A C w® of size < k such that (Vf € C¥)(3x € A)(Ym)(3®n)(z(n) € f(m)(n))
holds.

Proof of Theorem [7.5.1. add(N)L,. . > add(N) holds by Fact 752. We prove add(N)L, . < add(N).

game = game —

Take a witness A for (3) of Fact 7-52. Now we want to prove that Player I has no winning strategy
for the anti-localizing game with respect to A. Take a strategy o: 2<% — [w]<“ of Player L. Since A
satisfies the condition in (3) of Fact 52, we can take # € A such that (3%°n)(x(k) & o(i | k))) for
every i € 0.
We now put 7 € 2¥ by
(it 2(i) € (i [ k))

) 1
1k =
0 (otherwise)

If i € 0, then (3°°n)(xz(k) € o(i | k)) by the choice of x. But this fact and the choice of i imply i ¢ O.
It’s a contradiction. So i ¢ 0. Therefore i is a play of Player II that wins against Player I's strategy
. O

Theorem 7.5.3. add(N)g,,,. = cov(M) holds.
Before proving this theorem, we recall the relationship between cov(M) and slaloms.
Fact 7.5.4 ([BJY95, Lemma 2.4.2]). The following are equivalent.
(1) cov(M) < k.
(2) There is a family A C w* of size < x such that (Vp € C)(3z € A)(Vn)(z(n) € ¢(n)) holds.
In addition, the following characterization is well-known.
Fact 7.5.5. The following are equivalent.
(1) k < cov(M).

(2) Martin’s axiom for countable posets with x-many dense subsets.
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Proof of Theorem [7.5.3. We first prove add(N)g} e < cov(M). Take a family A C w* of size cov(M)
that satisfies (2) of Fact ["574. Then the strategy that says 1 always is a winning strategy for Player
1I.

We next prove cov(M) < add(N)LL,,.. Assuming x < cov(M), we shall prove £ < add(N) g pe-
Fix a family A of size k. Take an arbitrary strategy 7 of Player II. We show that 7 is not a winning
strategy.

We may assume that Player II plays the digit 1 infinitely often along 7, otherwise, 7 is clearly not
a winning strategy.

Set P =, [1;<,lw]"t!. For each z € A, we define a set D, as follows:
D, ={pe P:(3k € dom(p))(z(k) € p(k) and 7(p | (k+1)) =1}

Then each D, is a dense subset of P, using the above assumption.
Therefore, by Fact 55, we can take a filter G C P that intersects with all D,’s. Put ¢ = JG.
Then if Player I plays g, then Player I wins against Player II, who obeys the strategy 7. O

Theorem 7.5.6. add(N)L, .. = add(N) holds.

game

Proof. Using terminology in [RIall, Section 10], add(N)L, .. is equal to the global, adaptive, predic-

game

tion specified by the predefined function version of evasion number. Moreover, in the article, it was

shown that this invariant is equal to add(N). O
Theorem 7.5.7. add(N)g,,,.- = ¢ holds.

Proof. Fix A C w” such that Player IT has a winning strategy 7 for the anti-localizing®* game with
respect to A. We shall show that A is of size ¢. Consider the game tree T' C [], . X(n) that 7
determines, where X (2n) = [w]<"*! and X (2n + 1) = w.

First, assume the following.

e (Case 1) There is a o € T such that for every odd k > |o|, there is an nj < w such that for every
T € T extending o with |7| > k, we have 7(k) = my,.

Fix the witness o, (ny, : k > |o|) for Case 1.

Consider the next play.

Player I ‘ a(0) oo o(loel=2) {n‘a‘} {n‘UH_Q}
Player 1I | o(l) ... o(lo] — 1) Mo No|+2

Then the sequence defined by the play of Player II does not avoid the slalom defined by the play
of Player 1. So Player II loses. This is a contradiction.

So Case 1 is false. Thus we have

e (Case 2) For every o € T, there is an odd number k& > |o| such that for every n < w, there is
T € T extending o with |7| > k such that 7(k) # n.

Note that there are 79,71 2 o with |1g], 71| > k such that 79(k) # 71 (k) in Case 2.
Now we can construct a subtree of 7' in the following manner. First we put oz = &. Suppose

we have (o : s € 25!). Then for each s € 2!, we can take 04~9,0,~1 2 0, and k; > |o| such that

O-s“O(k's) 7é Us’\l(ks)
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Now for each f € 2%, we put oy by 0y = U, c, Ofn-

For each f € 2¥, we have o € [T]. So Player II wins at the play o;. So by the definition of the
game, we can take x5 € A such that x¢(k) = o¢(2k+1). It should be clear that if f and g are distinct
elements of 2¥, then we have xy # 4. Therefore we have |A| = c. O

7.6 Open problems

Question 7.6.1. Does it hold that s! < non(€), where £ is the o-ideal generated by closed null

game*

sets?

Question 7.6.2. What is the value of 5éame* in the model obtained by finite support iteration of the
random forcing over a model of CH? (Note that in this model non(€) is small and non(M), 9 and

non(N) are large.)

Question 7.6.3. Is there a lower bound of 5Igame* other than s,? In particular, is add(N) a lower

I
bound of sy, 7

Question 7.6.4. Does ZFC prove that vl is equal to max{t,,0}?

game
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