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Game-theoretic variants of cardinal invariants

The study of cardinal invariants of the continuum is important in
set theory of reals. On the other hand, the study of infinite games
is also an important topic in set theory.

Our study connects the two fields of cardinal invariants and game
theory by examining what can be obtained from game-theoretic
modifications of cardinal invariants.

We don’t assume the axiom of determinacy in this presentation.
But we assume the axiom of choice.
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Summary of our results

game xIgame xIIgame

splitting sσ c
splitting* sσ ≤ ? ≤ min{non(M),d, non(N )} c
reaping max {r,d} ≤ ? ≤ max {rσ,d} c
reaping* ∞ ∞
bounding b d
bounding* b c
dominating d d
dominating* d c
anti-localizing add(N ) cov(M)
anti-localizing* add(N ) c
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The definition of the splitting number

For infinite subsets A,B of ω, we say A splits B if

|B ∩ A| = |B ∖ A| = ℵ0.

For S ⊆ [ω]ω, we say

• S is a splitting family
: ⇐⇒ (∀B ∈ [ω]ω)(∃A ∈ S)(A splits B).

The cardinal s defined below is called the splitting number:

• s := min{|S| : S is a splitting family}.
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s and cardinal invariants

s is a typical example of cardinal invariants of the continuum.

ℵ1
s

r

add(N )

cov(N )

add(M)

b

non(M)

cov(M)

d

cof(M)

non(N )

cof(N )

c
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Splitting games

Fix A ⊆ [ω]ω. We call the following game the
splitting game with respect to A:

Player I n0 < n1 < . . .
Player II i0 ∈ 2 i1 ∈ 2 . . .

Player II wins ⇔ Player II played both 0 and 1
infinitely and there is A ∈ A such that

{nk : k ∈ ω} ∩ A = {nk : k ∈ ω and ik = 1}.
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Cardinal invariants on splitting games

Definition

sIgame = min{|A| : A ⊆ P(ω),

In the splitting game with respect to A,

Player I does not have a winning strategy}
sIIgame = min{|A| : A ⊆ P(ω),

In the splitting game with respect to A,

Player II has a winning strategy}
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Theorems about splitting games

We can easily see the following.

Proposition (Chapital–G.–Hayashi)

s ≤ sIgame ≤ sIIgame ≤ c.

The following needs some discussion.

Theorem (Chapital–G.–Hayashi)

sIgame = sσ and sIIgame = c.

(We will see the definition of sσ in the next page.)
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Definition of σ-splitting number

For A ∈ [ω]ω and f : ω → [ω]ω, we say A σ-splits f if

For every n, A splits f (n).

For S ⊆ [ω]ω, we say S is a σ-splitting family

: ⇐⇒ (∀f : ω → [ω]ω)(∃A ∈ S)(A σ-splits f ).

We call the following cardinal the σ-splitting number:

• sσ := min{|S| : S is a σ-splitting family}.
It can be easily seen that s ≤ sσ.

Note It is a longstanding open question whether ZFC proves
s = sσ!

13 / 38



The proof of sσ ≤ sIgame (1/2)

Theorem sσ ≤ sIgame.

Proof. Fix a family A ⊆ [ω]ω such that Player I has no winning
strategy for the splitting game with respect to A. We want to show
that A is a σ-splitting family.

Take f : ω → [ω]ω. We shall find A ∈ A such that A splits f (n) for
every n ∈ ω.
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The proof of sσ ≤ sIgame (2/2)

Theorem sσ ≤ sIgame.

Consider the following strategy of Player I.

f (0) f (1) f (2) f (3) . . .

. . .

...
...

...
...

→ 0
→ 0
→ 1

→ 0
→ 1

→ 0
→ 1
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splitting* game

Fix A ⊆ [ω]ω. We call the following game splitting* game with
respect to A.

Player I i0 ∈ 2 i1 ∈ 2 . . .
Player II j0 ∈ 2 j1 ∈ 2 . . .

Player II wins if either Player I said 1 finitely or

{k ∈ ω : jk = 1} is in A and splits {k ∈ ω : ik = 1}.
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Cardinal invariants on splitting* games

Definition

sIgame∗ = min{|A| : A ⊆ P(ω),

In the splitting* game with respect to A,

Player I does not have a winning strategy}
sIIgame∗ = min{|A| : A ⊆ P(ω),

In the splitting* game with respect to A,

Player II has a winning strategy}
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An observation of splitting* games

The splitting* game with respect to A is a harder game for Player
II than the splitting game with respect to A.

Therefore, sIgame ≤ sIgame∗ and sIIgame ≤ sIIgame∗ hold.

Thus, we have sσ ≤ sIgame∗ and sIIgame∗ = c．
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Theorems about splitting* games

Theorem (Chapital–G.–Hayashi)

The proposition s < sIgame∗ is relatively consistent from ZFC.

Theorem (Chapital–G.–Hayashi)

sIgame∗ ≤ non(M),d, non(N ).
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Consistency proof

Theorem Con(s < sIgame∗).

We use the following fact.

Fact by Judah–Shelah Assume CH. Then every finite support
iteration of Suslin ccc forcing forces that s = ℵ1.

Using this theorem, it is enough to show that there is a Suslin ccc
forcing that adds a generic strategy of Player I that wins every play
in the ground model.
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Consistency proof

Theorem Con(s < sIgame∗).

Define such a forcing poset P as follows:

P = {(n, s,H) : n ∈ ω, s : 2<n → 2,H ⊆ 2ω ∖ 0 finite}.
Here, 0 is the set of eventually zero sequences. The order is:

(n′, s ′,H ′) ≤ (n, s,H) ⇐⇒ n ≤ n′, s ⊆ s ′,H ⊆ H ′ and

(∀x ∈ H)(∀i ∈ [n, n′))(x(i) = 0 → s ′(x ↾ i) = 0).

Define a P-name σ̇ as follows:

⊩ σ̇ =
∪

{s : (n, s,H) ∈ G}.

This σ̇ is the desired name for the generic strategy. 23 / 38



Consistency proof

Theorem Con(s < sIgame∗).
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Consistency proof

Theorem Con(s < sIgame∗).
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Consistency proof

Theorem Con(s < sIgame∗).

By density arguments, we can show the following:

1 ⊩ (∀x ∈ (2ω ∖ 0) ∩ V )({k ∈ ω : σ̇(x ↾ k) = 1} ⊆∗ x−1{1}).
2 ⊩ (∀x ∈ 2ω ∩ V )({k ∈ ω : σ̇(x ↾ k) = 1} is infinite).

In the case x ∈ 0, it is clear that

⊩ {k ∈ ω : σ̇(x ↾ k) = 1} ⊆∗ x−1{0}.
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An upper bound of sIgame∗

Theorem sIgame∗ ≤ non(N ).

Recall that
non(N ) := min{|A| : A ⊆ 2ω,A is a Lebesgue non-null set}.
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An upper bound of sIgame∗

Theorem sIgame∗ ≤ non(N ).

Plan. Fixing the strategy σ of
Player I, it is sufficient to say that
the following set has measure 0:

{x ∈ 2ω : the strategy σ wins

the play x in splitting* game}

Let us divide this set into
intervals, and then reduce the
problem to counting up finite
sets.
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An upper bound of sIgame∗

Theorem sIgame∗ ≤ non(N ).

Lemma 1 Let I = [i , j) be an interval in ω. Let s ∈ {0, 1}i ,
σ : {0, 1}<j → 2 and ε ∈ 2. Set

B I
s,ε(σ) = {x ∈ {0, 1}j :s ⊆ x , (∃k ∈ I )(σ(x ↾ k) = 1), and

(∀k ∈ I )(σ(x ↾ k) = 1 → x(k) = ε)}.

Then we have
|B I

s,ε(σ)|
2j−i

≤ 1

2
.

(Proof) Induction on |I |.
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An upper bound of sIgame∗

Theorem sIgame∗ ≤ non(N ).

Lemma 2 Let a < b < ω. Let Ī = ⟨In : a ≤ n < b⟩ be a sequence
of consecutive intervals in ω and put m := min Ia and
M := max Ib−1 + 1. Let σ : {0, 1}<M → 2 and ε ∈ 2. Set

B Ī
ε(σ) = {x ∈ {0, 1}M :(∀n ∈ [a, b))[(∃k ∈ In)(σ(x ↾ k) = 1), and

(∀k ∈ In)(σ(x ↾ k) = 1 → x(k) = ε)]}.

Then we have
|B Ī

ε(σ)|
2M

≤ 1

2b−a
.

(Proof) Use Lemma 1 repeatedly.
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An upper bound of sIgame∗

Theorem sIgame∗ ≤ non(N ).

Let IP be the set of all interval partitions of ω. For Ī , J̄ ∈ IP, we
define

Ī ≤∗ J̄ :⇔ (∀∞m)(∃n)(In ⊆ Jm).

We use the following theorem due to Martin Goldstern.

Fact by Goldstern Let A ⊆ IP× 2ω be a Σ1
1 set. Suppose that the

vertical section AĪ is null for every Ī ∈ IP and AĪ ⊆ AJ̄ for every
Ī , J̄ ∈ IP with Ī ≤∗ J̄ . Then

∪
Ī∈IP AĪ is null.
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An upper bound of sIgame∗

Theorem sIgame∗ ≤ non(N ).

Let A ⊆ P(ω) be a non-null set of size non(N ). We will show that
Player I has no winning strategy for the splitting* game with
respect to A. Fix a strategy σ : 2<ω → 2 of Player I.
For Ī ∈ IP and ε ∈ 2, define

C Ī
ε =

∪
a∈ω

∩
b>a

B Ī ↾[a,b)
ε (σ).

By Lemma 2, this set C Ī
ε is null.
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An upper bound of sIgame∗

Theorem sIgame∗ ≤ non(N ).

Moreover when Ī ≤∗ J̄ , we have C Ī
ε ⊆ C J̄

ε . Also the set

{(Ī , x) : x ∈ C Ī
ε} is clearly a Borel set. Therefore, we can apply

Goldstern’s theorem to get that
∪

Ī∈IP C
Ī
ε is null.

Moreover we can easily observe that

{x ∈ 2ω : the strategy σ wins the play x in splitting* game}
⊆

∪
Ī∈IP

C Ī
0 ∪

∪
Ī∈IP

C Ī
1 .

So we can take x ∈ A that avoids this set. This means σ is not a
winning strategy for the splitting* game with respect to A.
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The diagram with invariants regarding splitting games

ℵ1
sIgame = sσ sIgame∗s

r

add(N )

cov(N )

add(M)

b

non(M)

cov(M)

d

cof(M)

non(N )

cof(N )

c = sIIgame = sIIgame∗
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Quesitions

• In the model where we proved s < sIgame∗, does it hold that
sσ = ℵ1?

• Can we show sIgame∗ ≤ non(E) in ZFC?
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